Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick unter die Haut: Gründung eines Terahertz-Zentrums an Uni Regensburg

31.05.2007
Nur Fachleute kennen diese Strahlen bisher, doch sie versprechen viel: Man soll mit ihrer Hilfe durch Kleidung schauen und nach Waffen oder Sprengstoff suchen können, mit einem Blick in den menschlichen Körper sollen Tumore festzustellen sein, Daten sollen sich drahtlos um ein Vielfaches schneller als im bisherigen W-LAN übertragen lassen.

Terahertz-Strahlen sind es, die solch große Hoffnungen wecken und auch die Forscher an der Universität Regensburg zunehmend beschäftigen. Die Fakultät für Physik gründet deshalb ein Terahertz-Zentrum, das dabei helfen soll, diese noch relativ unerforschten Strahlen besser zu verstehen. Am Dienstag, dem 5. Juni, wird es an der Universität Regensburg eröffnet.

"Die Terahertz-Strahlung ist ein hochaktuelles Thema in der physikalischen Forschung", so Professor Sergey Ganichev, der Koordinator des Terahertz-Zentrums (TerZ). "Wir möchten die Grundlagen dieser Wellen besser verstehen und untersuchen, welche Anwendungsmöglichkeiten sich daraus langfristig ergeben." Terahertz-Strahlung (THz) befindet sich im Frequenzbereich der elektromagnetischen Strahlung, dessen Wellenlänge zwischen der des sichtbaren Lichts und dem Mikrowellenbereich liegt. Dieser Frequenzbereich ist besonders interessant für die Festkörper-, Halbleiter-, Astro- und Plasmaphysik. Das neue Zentrum ist eine Koordinationsstelle für die gemeinsame Forschung und vereinigt eine Vielzahl an Laborgeräten, mit deren Hilfe die Regensburger Forschungsgruppen sowie internationale Partner gemeinsam Fortschritte auf dem Gebiet erzielen möchten. "Die meisten unserer Geräte haben unsere Mitarbeiter selbst gebaut. Denn der Markt dafür muss sich erst noch entwickeln, weil das Gebiet so neu ist", so Professor Ganichev.

Terahertz-Wellen sollen nicht nur dabei helfen, grundlegende physikalische Fragen zu beantworten, sondern auch im Alltag zum Einsatz kommen. Im Zuge gestiegener Terrorgefahr wecken besonders mögliche Anwendungen in der Sicherheitstechnik verstärkt Interesse. "Jeder Stoff, der in Terahertz-Frequenz bestrahlt wird, absorbiert die Strahlen unterschiedlich und ergibt deshalb ein charakteristisches Profil. So lassen sich zum Beispiel mitgeführte Plastik-Sprengstoffe und Waffen erkennen, die mit anderen Verfahren derzeit nicht so einfach gefunden werden", so Professor Ganichev. So könne beispielsweise ein unter einer Zeitung mitgeführtes Keramikmesser - eine gefährliche Waffe - leicht erkannt werden. Dieses Prinzip ist vor allem für die Sicherheitschecks an Flughäfen interessant.

Nach dem gleichen technischen Prinzip ließen sich beispielsweise auch Briefe durchleuchten und auf gefährliche Inhalte wie Milzbrand-Erreger untersuchen. "Eine der größten Herausforderungen für einen Einsatz der Terahertz-Strahlen sind derzeit noch die Sender. Diese sind einfach noch zu groß und teuer", so Professor Ganichev. Mit dem Terahertz-Zentrum möchten die Forscher zur Entwicklung von solchen Sendern, Empfängern, Komponenten und Techniken beitragen.

Weitere Einsatzmöglichkeiten der Terahertz-Strahlung liegen in der Medizin. Wegen ihrer deutlich geringeren Energie schaden die Terahertz-Strahlen im Gegensatz zu Röntgen-Strahlen dem Patienten nicht. Im Gegenteil: Aufgrund ihrer unterschiedlichen Konsistenz lassen sich Tumore von gesundem Gewebe unterscheiden. Anzuwenden wären solche Techniken beispielsweise in bildgebenden Verfahren zur Erkennung von Hautkrebs. Weitere Einsatzmöglichkeiten sind in der Materialprüfung denkbar, beispielsweise um die Qualität von Produkten zu sichern, ohne diese dafür zerstören zu müssen.

Mit solchen praktischen und grundlegenden Fragen möchte sich das Terahertz-Zentrum vertieft auseinandersetzen. Die wissenschaftlichen Ziele des TerZ sind damit die Erforschung und Entwicklung der THz-Techniken sowie Grundlagenforschung im Bereich der Spintronik, nichtlinearen Optik, Optoelektronik und chemischen und biologischen Analyse. Da zu erwarten ist, dass im Bereich der Sicherheitstechnik, der Kommunikationsanwendungen oder in der Medizin neue THz-Methoden eine wichtige Rolle spielen werden, soll am TerZ auch die Wechselwirkung der THz-Strahlung mit biologischen Substanzen erforscht werden. Mit insgesamt acht Lasern und spektroskopischen Systemen deckt das Terahertz-Zentrum eine Bandbreite von kleinen bis zu den weltweit höchsten Intensitäten im Terahertz-Bereich ab, die in der Spektroskopie von Festkörpern genutzt werden.

Bereits seit einigen Jahren wird an der Fakultät für Physik der Universität Regensburg am innovativen Gebiet der Terahertz-Physik geforscht. Dies hat bereits zu mehr als 200 Publikationen in etablierten Fachzeitschriften und zahlreichen eingeladenen Vorträgen auf bedeutenden internationalen Konferenzen geführt. Den Grundstein in Regensburg haben die Professoren K. F. Renk und W. Prettl gelegt; der signifikante Fortschritt in den letzten Jahren ist vor allem auf die bewährte intensive Zusammenarbeit der Arbeitsgruppen um die Professoren Sergey Ganichev, Dieter Weiss, Werner Wegscheider, Christian Back, Christian Schüller, Hans Lengfellner, Otto Wolfbeis und Vladimir Mirsky mit ihren modernen Labors sowie auf die breite internationale Kooperation zurückzuführen. Mit Hilfe des Terahertz-Zentrums können diese Gruppen nun unterschiedliche technische Methoden und experimentelle Möglichkeiten miteinander kombinieren und die bereits entstehende internationale Vernetzung effektiver ausbauen.

Die Eröffnung des Terahertz-Zentrums findet am Dienstag, dem 5. Juni, um 16 Uhr im Physik-Hörsaal H 34 der Universität Regensburg statt.

Kontakt:
Prof. Dr. Sergey D. Ganichev
Koordinator des Terahertz-Zentrums:
Universität Regensburg
Tel.: (0941) 943-2050 (Sekretariat: -2071)
Fax: (0941) 943-1657
Email: sergey.ganichev@physik.uni-regensburg.de

Rudolf F. Dietze | idw
Weitere Informationen:
http://www.physik.uni-regensburg.de/forschung/ganichev
http://www.uni-regensburg.de/TerZ

Weitere Berichte zu: Stichwort 4451 Strahlen Terahertz-Strahl Terahertz-Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie