Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Mathematiker knacken riesige Zahl

21.05.2007
Ein internationales Forscherteam hat eine Zahl mit 307 Dezimalstellen in ihre Primfaktoren zerlegt - Weltrekord! Rund ein Jahr haben Mathematiker des japanischen Telekommunikationsunternehmens NTT, der Polytechnischen Hochschule in Lausanne und der Universität Bonn gerechnet.

Sie stellen damit den bisherigen Rekord um gut 30 Dezimalstellen in den Schatten. Gravierende Auswirkungen auf die Sicherheit von Verschlüsselungsverfahren befürchten die beteiligten Wissenschaftler jedoch nicht.

Die meisten modernen Verschlüsselungsverfahren basieren auf der Schwierigkeit, große Zahlen in ihre Primfaktoren zu zerlegen. So hätte ein einzelner Computer mehr als 100 Jahre benötigt, um das 307-stellige Zahlenmonster zu knacken. "Wir haben jedoch die Arbeit auf Hunderte von Rechnern verteilt", erklärt Dr. Thorsten Kleinjung von der Universität Bonn. So wurden etwa 80 Prozent der Berechnungen beim japanischen Telekommunikationsunternehmen NTT durchgeführt.

Würde man die geknackte Zahl in Binärdarstellung, also als Abfolge von Nullen und Einsen, schreiben, hätte sie 1017 Stellen. Bei Bankgeschäften oder der Übertragung geheimer Daten über das Internet benutzt man zur Verschlüsselung Binärzahlen mit 1024 Stellen. "Es wird aber wohl noch viele Jahre dauern, bis derartige Codes zu entschlüsseln sind", beruhigt Thorsten Kleinjung. "Unser Verfahren eignet sich nämlich nicht für alle Zahlen." Um die Methode zum universellen Codebrecher aufzumotzen, müssten die Forscher sie modifizieren. Mit derselben Rechenleistung ließen sich dann frei wählbare Zahlen von maximal 700 Binärstellen zerlegen.

... mehr zu:
»Mathematik »NTT

Der Bonner Mathematiker hat sich zusammen mit dem Leiter der Arbeitsgruppe Professor Dr. Jens Franke schon häufiger erfolgreich als Codebrecher betätigt. Dennoch freut er sich über den Erfolg: "Es ist schon ein schönes Gefühl, wenn man nach vielen Monaten Arbeit merkt, dass es geklappt hat."

Kontakt:
Dr. Thorsten Kleinjung
Mathematisches Institut der Universität Bonn
Telefon: 0228/73-2842
E-Mail: thor@math.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Mathematik NTT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics