Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Drehsinn im Nanokosmos

11.05.2007
Hamburger und Jülicher Forscher entdecken "chirale" Magnetstruktur in atomar dünner Metallschicht

Hamburger und Jülicher Wissenschaftler konnten erstmals nachweisen, dass rechts- und linkshändige Drehung bei magnetischen Schichten auf atomarer Ebene nicht immer gleichwertig sind. Diese Auswahl des Drehsinns, eine so genannte Chiralität, bei magnetischen Strukturen wurde an der Universität Hamburg mithilfe der spinpolarisierten Rastertunnelmikroskopie experimentell gefunden und der Mechanismus durch aufwändige Computerberechnungen in Hamburg sowie im Forschungszentrum Jülich aufgeklärt. Wie in der aktuellen Ausgabe der renommierten Zeitschrift "Nature" nachzulesen ist, könnten diese neuen außergewöhnlichen Erkenntnisse ein wichtiger Meilenstein bei der Entwicklung völlig neuartiger Computersysteme sein, die auf der so genannten "Spintronik" basieren.

Schon lange weiß man um die große Bedeutung von Bild und Spiegelbild in der Natur. Beide sehen sich zwar sehr ähnlich, sind aber nicht identisch, da das Spiegelbild durch Drehung nicht mit dem Original zur Deckung gebracht werden kann. Solche Systeme nennt man in der Wissenschaft "chiral". Einschlägige Beispiele aus der makroskopischen Welt sind die rechte und linke Hand oder rechts- bzw. links-gewundene Schneckenhäuser. Auch im Nanokosmos findet man viele chirale Moleküle wie Zucker und Aminosäuren nur in einer der zwei möglichen Formen vor. Dies erklärt auch die außerordentliche Bedeutung der Chiralität bei Wirkstoffen in der Medizin. Auch bei der DNA-Doppelhelix, auf der alles Leben basiert, hat die Natur entschieden, sie nur in einer der beiden möglichen chiralen Formen vorkommen zu lassen.

Wie die aktuelle Ausgabe der Fachzeitschrift "Nature" berichtet, fanden Hamburger Wissenschaftler bei der Untersuchung einer einzelnen atomaren Manganschicht auf Wolfram mit einem spinpolarisierten Rastertunnelmikroskop eine komplexe magnetische Struktur: statt einer parallelen oder antiparallelen Ausrichtung benachbarter magnetischer Momente - wie es bereits in ähnlichen Systemen beobachtet wurde - zeigen die Messungen eine Spiralstruktur, bei der das magnetische Moment jedes Atoms gegenüber dem seines Nachbarn verdreht ist (siehe Abbildung). Bei genauerer Untersuchung dieses Phänomens wurde festgestellt, dass der Drehsinn dieser Spirale immer gleich ist, während die andere Drehrichtung nicht beobachtet wurde, die magnetische Struktur ist also chiral.

Um den Mechanismus für die Bildung dieser ungewöhnlichen Magnetstruktur aufzuklären wurden in Hamburg und in Jülich aufwändige Berechnungen durchgeführt, die überhaupt erst in jüngster Zeit durch die Verwendung von Hochleistungscomputern möglich sind. Diese Rechnungen erlauben Vorhersagen über die Stärke der Drehung sowie über den Drehsinn magnetischer Strukturen. Nur ein Bruch der Symmetrie erlaubt die Auswahl eines Drehsinns: so gibt es nur sehr wenige Kristalle, die im Inneren diese Eigenschaft überhaupt aufweisen können, während diese Bedingung an Oberflächen immer erfüllt ist. Umso erstaunlicher ist es, dass diese chiralen Magnetstrukturen erst jetzt an einer Kristalloberfläche identifiziert wurden. Für Anwendungen im Zukunftsgebiet der "Spintronik" ergeben sich in solchen chiralen Magnetsystemen neue Möglichkeiten: ein fließender Strom kann einen Drehimpuls auf eine Spinspirale übertragen und diese sogar in Bewegung versetzen.

Original-Veröffentlichungen:

M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer,
A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger
Chiral magnetic order at surfaces driven by inversion asymmetry
Nature 447, 190-193, doi:10.1038/nature05802
Artikel: http://www.nature.com/nature/journal/v447/n7141/pdf/nature05802.pdf
Christian Pfleiderer and Ulrich K. Rößler
Condensed-matter physics: Let's twist again
Nature 447, 157-158, doi:10.1038/447157a
Artikel: http://www.nature.com/nature/journal/v447/n7141/pdf/447157a.pdf

Heiko Fuchs | idw
Weitere Informationen:
http://www.nanoscience.de
http://www.sfb668.de
http://www.fz-juelich.de/iff/e_th1

Weitere Berichte zu: Drehsinn Drehung Magnetstruktur Nanokosmos

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences