Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Konzentrationsprobleme gelöst -- ULMU-Forscher dem Ursprung des Lebens auf der Spur

11.05.2007
Seit Jahrzehnten versucht die Forschung zu rekonstruieren, was vor etwa vier Milliarden Jahren auf unserem Planeten geschah. Schließlich entstand in diesem geologischen Zeitalter das Leben auf unserem Planeten. Noch immer ist nicht zweifelsfrei geklärt, wie aus einzelnen molekularen Strukturen einfache Lebensformen entstehen konnten.

Denn diese Prozesse setzen nicht zuletzt eine hohe Ausgangskonzentration der Biomoleküle voraus, die in der "Ursuppe" der frühzeitlichen Ozeane wohl nur stark verdünnt vorkamen. Ein internationales Team um Dr. Dieter Braun, Leiter einer Emmy-Noether-Nachwuchsgruppe am Lehrstuhl für Angewandte Physik der Ludwig-Maximilians-Universität (LMU) München, konnte nun einen Mechanismus nachweisen, der eine exponentielle Akkumulation ermöglicht haben könnte. Wie die Forscher im Fachjournal "Proceedings of the National Academy of Sciences (PNAS)" berichten, kann es im Porensystem von hydrothermalen Quellen am Meeresboden - die vielfach als Ursprungsort des Lebens auf der Erde gelten - wegen großer Temperaturunterschiede lokal zu einer hohen Konzentration von Biomolekülen kommen.

Am Ozeanboden finden sich hydrothermale Quellen, aus denen mehrere hundert Grad heißes Wassers austritt. Erst vor wenigen Jahrzehnten entdeckt, galten sie zunächst als extrem lebensfeindliche Umgebung - bis komplexe Ökosysteme an diesen Quellen nachgewiesen wurden. Zunehmend häuften sich auch Theorien, wonach an diesen Quellen das Leben überhaupt entstanden sein könnte. "Doch alle theoretischen und experimentellen Ansätze zum biochemischen Ursprung des Leben setzen eine hohe Ausgangskonzentration von Biomolekülen voraus", berichtet Braun. "Ungeklärt war bislang, welcher natürlich vorkommende Mechanismus dies in den frühzeitlichen Ozeanen hätte ermöglichen können, in denen auch die einfachsten Verbindungen stark verdünnt gewesen sein müssen."

In Zusammenarbeit mit anderen LMU-Forschern und internationalen Wissenschaftlern konnte er jetzt eine mögliche Lösung für dieses Konzentrationsproblem liefern: "In den ausgedehnten Porensystemen der hydrothermalen Quellen kommt ein Mechanismus zum Tragen, der eine extreme Akkumulation von Biomolekülen erlaubt", so Braun. In dem porösen Gestein in der Nähe von hydrothermalen Quellen treten hohe Temperaturgefälle auf. Eine Simulation der Prozesse durch Braun und seinen Mitarbeiter Philipp Baaske zeigte, dass in diesen länglichen, nur wenige hundert Mikrometer großen Poren selbst kleine Biomoleküle hochgradig akkumuliert werden können. "Die großen Temperaturunterschiede treiben zwei Effekte an, die Konvektion und die Thermophorese", erklärt Baaske. "In Kombination können sie eine stark erhöhte Konzentration von Biomolekülen am Boden der Pore bewirken. Dieser Mechanismus ist auch als Gastrennungsröhre oder Clusius-Röhre bekannt und wurde unter anderem versuchsweise zur Isotopentrennung von Uran benutzt."

... mehr zu:
»Akkumulation »Biomolekül »Molekül

Viele Theorien zur Entstehung des Lebens bauen darauf auf, dass sich zunächst kurze Moleküle aus RNA, eine dem Erbmolekül DNA eng verwandte Nukleinsäure, gegenseitig replizierten. Doch war nach bisherigem Wissensstand die für eine derartige "RNA-Welt" nötigen Konzentration des Moleküls nirgends auf der Erde zu finden. "Unsere Arbeit hat nun aber gezeigt, dass gerade derart kleine Verbindungen wie die kurzen RNA-Moleküle in hydrothermalen Quellen hochgradig akkumuliert werden können", berichtet Braun. "Eine optimale Konzentration der RNA wird in Poren mit einer Breite von 0,15 Millimetern und einer Länge von etwa 40 Millimetern erreicht. Dabei sammeln sich die Moleküle in einem Bereich an, der in etwa der Größe moderner Zellen entspricht." In kleineren Poren werden dagegen längere Moleküle besser akkumuliert. Dieser Mechanismus kann unter anderem auch in der Biotechnologie zur Aufkonzentration von Molekülen aus biologischen und medizinischen Proben benutzt werden.

Die Poren ähneln in ihrer Wirkung einer Art molekularen Falle, die kleine Biomoleküle genügend aufkonzentriert und längere Verbindungen exponentiell höher akkumuliert. Damit entsteht ein natürlicher Selektionsdruck der Akkumulation zugunsten größerer Moleküle. Das wäre gerade bei der molekularen Evolution ein hilfreicher Effekt, weil damit mehr und mehr Information auf den Verbindungen Platz findet. Gleichzeitig werden die größeren Moleküle verstärkt daran gehindert, sich im umgebenden Meereswasser zu verteilen. "Alles in allem können die hydrothermalen Poren also als selektive molekulare Fallen gerade für die evolutionär interessantesten Moleküle verstanden werden", meint Baaske.

Diese neue Erkenntnis war nur möglich dank einer engen interdisziplinären Zusammenarbeit zwischen Physikern, Biochemikern und Geologen, unter ihnen auch Kono H. Lemke von der Eidgenössischen Technischen Hochschule (ETH) in Zürich, und Michael J. Russell vom Jet Propulsion Laboratory in Pasadena, Kalifornien, einem der führenden Spezialisten auf dem Gebiet der hydrothermalen Quellen. Wie Braun in vorangegangenen Arbeiten bereits nachgewiesen hat und in unabhängigen Studien bestätigt wurde, können die Temperaturunterschiede in den hydrothermalen Quellen auch eine der wichtigsten biochemischen Reaktionen antreiben: die Polymerase-Kettenreaktion, kurz PCR, zur Vervielfältigung von Erbinformation. Damit erscheint es gut vorstellbar, dass parallel zur Akkumulation erste thermisch getriebene Replikationsreaktionen stattfanden - anfänglich wahrscheinlich noch mit Hilfe katalytisch aktiver RNA-Moleküle anstatt des hochentwickelten Enzyms Polymerase, das jetzt in der Natur diese Reaktion vorantreibt und auch in Forschungslaboren diese Funktion übernimmt.

Bislang war es nicht möglich, eine realistische experimentelle Kette von den Bedingungen auf der noch jungen Erde zu den ersten replizierenden und evolvierenden Molekülen zu konstruieren - nicht zuletzt wegen der offenen Frage der Aufkonzentrierung der Biomoleküle. "Unsere Arbeit hat zum ersten Mal eine realistische Möglichkeit für eine hohe Akkumulation nachgewiesen", so Braun. "Es zeigt sich einmal mehr, dass die interdisziplinären Ansätze, die im 'Center for NanoScience' (CeNS) der LMU besonders unterstützt und verfolgt werden, zu weit reichenden Ergebnissen führen können. Auch wenn unsere Ergebnisse keinen hinreichenden Beweis für den Ursprung des Lebens bei den hydrothermalen Quellen liefern können, sind wir der Lösung dieses Rätsels möglicherweise ein großes Stück näher gekommen."

Veröffentlichung:
"Extreme accumulation of nucleotides in simulated hydrothermal pore systems", Philipp Baaske, Franz M. Weinert, Stefan Duhr, Kono H. Lemke, Michael J. Russell, and Dieter Braun, PNAS online, 9. Mai 2007
Ansprechpartner:
Dr. Dieter Braun
Department für Physik und "Center for NanoSciences (CeNS) der LMU
Tel.: 089-2180 2317
Fax: 089-2180 2050
E-Mail: dieter.braun@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Akkumulation Biomolekül Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie