Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer zeigt: Nanoschichten haben Sinn für Drehungen

10.05.2007
Jülich-Hamburger Forscherteam findet homochirale Magnetstruktur in dünnen Metallschichten

Die Natur unterscheidet auf atomarer Ebene zwischen Bild und Spiegelbild magnetischer Strukturen, haben Physiker des Forschungszentrums Jülich und der Universität Hamburg herausgefunden: Mithilfe von Computersimulationen in Jülich und Experimenten in Hamburg entdeckten sie eine so genannte "homochirale" Magnetstruktur in einer dünnen Metallschicht, wie in der aktuellen Ausgabe der renommierten Fachzeitschrift "Nature" nachzulesen ist. Eine Version mit spiegelbildlichem Drehsinn existiert nicht. Die überraschende Selektivität begeistert die Forscher, eröffnet sie doch einerseits ein neues Forschungsgebiet und andererseits Anwendungsmöglichkeiten im Zukunftsgebiet der "Spintronik".

Bild und Spiegelbild sehen sich zwar ähnlich, sind aber nicht unbedingt dasselbe - diese Erkenntnis ist beileibe nicht neu. Strukturen, deren Bild und Spiegelbild sich nicht durch Drehen ineinander überführen lassen, nennen Naturwissenschaftler "chiral". Ein Beispiel dafür ist die menschliche Hand. Chiralität in kleinsten Dimensionen weist erstaunliche Besonderheiten auf: So kommen beispielsweise in der Natur viele Biopolymere, wie etwa Aminosäuren, die Bausteine von Eiweiß, nur in einer von zwei theoretisch vorstellbaren Varianten vor, sie sind homochiral. Die Spiegelbildform existiert nur im Labor.

Physiker des Forschungszentrums Jülich und der Universität Hamburg haben herausgefunden, dass die Natur auch bei magnetischen Strukturen in dünnen Metallschichten eine Form gegenüber ihrem Spiegelbild bevorzugt. Sie berichten darüber in der aktuellen Ausgabe der renommierten Fachzeitschrift "Nature". Mithilfe von Computersimulationen haben sie berechnet, dass in einer Manganschicht von nur einer Atomlage Dicke immer die gleiche dreidimensionale, gedrehte Anordnung vorkommt und niemals das Spiegelbild. Ihre Experimente bestätigten dies. "Solche chiralen Strukturen sind heiße Kandidaten für Anwendungen, etwa im Zukunftsgebiet der "Spintronik", weil sie eine Kopplung von elektronischen, optischen, magnetischen und strukturellen Eigenschaften ermöglichen", unterstreicht Prof. Stefan Blügel, Direktor am Jülicher Institut für Festkörperforschung, die Bedeutung dieses Fundes. "In Bauteilen der Zukunft kann der fließende Strom einen Drehimpuls auf die magnetische Struktur übertragen und sie damit in Bewegung versetzen." Die winzigen Formen sind nicht neu, waren aber bisher nur von sehr seltenen Kristallstrukturen bekannt. Erst durch die Arbeiten der Jülicher Physiker stellte sich heraus, dass es sie auch in anderen Materialien gibt, die vergleichsweise einfach herzustellen, einfach zu untersuchen und in Anwendungen bereits weit verbreitet sind - dünnen Metallschichten. Die Autoren eines Begleitartikels im Nature-Kapitel "News and Views" attestieren den Arbeiten denn auch mehr als nur akademische Bedeutung: Verständnis und Kontrolle des magnetischen Drehsinns in dünnen Filmen kämen gerade recht für neue Anwendungen, wie magnetischen Speichermedien mit besonders hoher Dichte.

... mehr zu:
»Manganschicht

Die magnetische Struktur, die der theoretische Physiker Blügel und seine Kollegen fanden, erinnert an eine sich überschlagende Welle, die in ihrer Bewegung erstarrt ist, in die Länge gezogen und vielfach aneinander gereiht. Das Spiegelbild, also eine auf den Kopf gestellte Welle, gibt es nicht, zumindest nicht in der untersuchten Manganschicht. Die Berechnungen müssen aber für jedes Material und jede Schichtdicke jeweils neu durchgeführt werden. Und solche Rechnungen sind aufwändig - sie verschlingen zehntausende Stunden Rechenzeit auf den schnellsten Computern unserer Zeit! Die Wissenschaftler profitieren davon, dass sie direkt vor Ort im Jülicher John von Neumann-Institut für Computing (NIC) Zugriff auf zwei so genannte Supercomputer haben, auf denen sich die Rechenzeit auf etwa einen Monat reduzieren lässt. Dies wird ihnen ermöglichen, noch komplexere magnetische Strukturen zu untersuchen.

Den Forschern gelang ihr wissenschaftlicher Durchbruch, weil sie in ihre Berechnungen erstmals eine bislang vernachlässigte magnetische Wechselwirkung einbezogen, die so genannte Dzyaloshinskii-Moriya(DM)-Wechselwirkung, die bei Betrachtungen der Volumeneigenschaften von Mangan und ähnlichen Metallen keine Rolle spielt. Die Physiker konnten aber nachweisen, dass sie dann entsteht, wenn atomdünne Manganschichten auf eine Oberfläche aufgebracht werden: Die DM-Wechselwirkung ist dann der entscheidende Mechanismus für die einzigartige Anordnung der elementaren magnetischen Momente. Den Jülicher Festkörper-physikern ist es erstmals gelungen, die Stärke der Wechselwirkung quantitativ zu bestimmen. Die Forscher sind überzeugt, dass ihre Erkenntnisse das Verständnis von Magnetismus in Nanodimensionen fundamental ändern werden: "Unsere Arbeit schafft neue Grundlagen und eröffnet ein völlig neues Forschungsgebiet. Wir stehen hier noch ganz am Anfang", glaubt Blügel. Und die Autoren des Begleitartikels in "Nature" bestätigen, dass "?viele frühere Ergebnisse und Interpretationen nun noch einmal hinterfragt werden müssen."

Original-Veröffentlichungen:
* M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel & R. Wiesendanger;
Chiral magnetic order at surfaces driven by inversion asymmetry;
Nature (10. Mai 2007)
* C. Pfleiderer, U. Rößler;
Let's twist again;
Nature (10. Mai 2007)
Weitere Informationen:
http://www.fz-juelich.de/portal/index.php?path=angebote/pressemitteilungen - Forschungszentrum Jülich
http://www.fz-juelich.de/iff/index.php - Institut für Festkörperforschung
http://www.fz-juelich.de/iff/d_th1 - IFF-Institut "Quanten-Theorie der Materialien"
http://www.fz-juelich.de/nic/ - John von Neumann-Institut für Computing (NIC)
http://www.nanoscience.de - Universität Hamburg, Forschungsgruppe Rastersensormethoden

Peter Schäfer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/

Weitere Berichte zu: Manganschicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie