Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidender Schritt zum Verständnis der initialen Blutgerinnung

02.05.2007
In der Early Edition von PNAS: Interdisziplinäre Forschergruppe mit Medizinern aus Münster und NIM-Physikern aus Augsburg und München liefert mit der Entdeckung eines "Nanoschalters im Blutkreislauf" den Schlüssel zu einem besseren Verständnis von Gefäßkrankheiten und Gerinnungsstörungen und zu neuen Therapieansätzen.

Physikern aus Augsburg und München, die im Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) kooperieren, ist es gemeinsam mit Medizinern der Universität Münster gelungen, das Rätsel der initialen Blutgerinnung zu lösen.

Den Beitrag "Shear-induced unfolding triggers adhesion of von Willebrand factor fibers", in dem S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz und M. F. Schneider ihre einschlägigen Untersuchungen und deren Ergebnisse beschreiben, wurde jetzt ) bereits vor dem Erscheinen der Druckversion in der Early Edition der US-amerikanischen Zeitschrift "Proceedings of the National Academy of Sciences" (PNAS) publiziert (http://www.pnas.org/papbyrecent.shtml). Die PNAS zählen zu den weltweit angesehensten Zeitschriften in den Naturwissenschaften.

Wie wird der VWF aktiviert?

... mehr zu:
»Blutgerinnung »Nanosystem »VWF

Wohl die meisten hätten die Behauptung unterschrieben, dass der Ablauf der Blutgerinnung, die letztendlich zum Verschluss von Verletzungen in Blutgefäßen führt, schon lange bis in alle Details verstanden wird. Ein großes Rätsel der Blutgerinnung war bislang allerdings immer noch ungeklärt: die Aktivierung des von-Willebrand-Faktors (VWF). Dieses hoch spezialisierte Makromolekül sorgt in einem gesunden Organismus für die Einleitung der Blutgerinnung nach einer Verletzung eines Blutgefässes. Die von-Willebrand-Erkrankung, bei der der Faktor entweder in einer krankhaft veränderten Form oder in zu geringen Mengen vorliegt, ist die häufigste Erbkrankheit, die zu erhöhter Blutungsneigung führt. Seit der Entdeckung des VWF im Jahre 1924 durch den Finnen Erik von Willebrand brüteten Wissenschaftler über der Frage, wie er aktiviert wird. Der von-Willebrand-Faktor ist das größte Eiweiß im menschlichen Blut und bleibt unter bestimmten Bedingungen an der Wand von verletzten Blutgefäßen kleben. Das bietet vorbeischwimmenden Blutplättchen die Möglichkeit zur Anhaftung. Damit kann eine Verletzung geschlossen werden. Doch die Frage, wie es zur Anheftung an die Gefäßwand kommt, blieb ungeklärt.

Weshalb höhere Anhaftung bei hohen Fließgeschwindigkeiten?

Ein weiteres Rätsel warfen Untersuchungen auf, die zeigten, dass die Anhaftung bei hohen Strömungsgeschwindigkeiten effektiver funktionierte als bei niedrigen. Dass dies so ist, ist für den Menschen einerseits absolut lebensnotwendig. Denn durch den im Herzen erzeugten Blutdruck werden gerade in kleineren Gefäßen - z. B. in den Arteriolen - Verletzungen der Gefäßwände erzeugt, und d. h., dass der VWF gerade dort besonders "fleißig" und effektiv arbeiten, wenn der Mensch überleben soll. Dass hier hohe Fließgeschwindigkeiten eine bessere Anhaftung bewirken, passt andererseits nicht zu unserer allgemeinen Erfahrung, dass etwa der Versuch, aus einem stark strömenden Gewässer ans Ufer zu gelangen, weitaus schwieriger ist als bei einem langsam dahin fließenden Strom. Das Rätsel, weshalb der VWF sich gewissermaßen konträr zu dieser Erfahrung verhält, scheint nun gelöst.

Der VWF als "mechanisch schaltbares" Molekül

Bei der bisher üblichen Herangehensweise an diese Frage standen einseitig enzymatische und biochemische Aspekte im Zentrum. Offensichtlich sind bei der Aktivierung des VWF aber mechanische Kräfte am Werk, große Scherkräfte nämlich, die bei hohen Strömungsgeschwindigkeiten - also unter Bedingungen, wie sie in den Arteriolen des menschlichen Blutkreislaufes herrschen - wirksam sind. Insofern mussten sich Wissenschaftler verschiedener Disziplinen zusammentun, um Fortschritte bei der Erforschung des Phänomens zu erzielen. Solch ein entscheidender Fortschritt hat sich nun aus der Zusammenarbeit von Medizinern aus Münster einerseits mit Physiker-Arbeitsgruppen der Universität Augsburg und der TU München andererseits ergeben, die der im Rahmen der Exzellenzinitiative des Bundes geförderten "Nanosystems Initiative Munich" (Sprecheruniversität LMU München) angehören: Die vom "interdisziplinären" Gebrüderpaar S. W. Schneider (Münster) und M. F. Schneider (Augsburg) vor zwei Jahren in Gang gesetzte Forschungskooperation hat im Ergebnis den von-Willebrand-Faktor als ein mittels Strömungsgeschwindigkeit "mechanisch schaltbares" Molekül identifiziert. "Dieser Erfolg", meint der Augsburger Nanowissenschaftler A. Wixforth, "ist eine Paradebeispiel für die Zukunftsträchtigkeit interdisziplinärer Forschung in der Nanowelt, wie sie als Idee hinter der 'Nanosystems Initiative Munich' steht."

Strömungssimulation mit Mikrofluidik

Um den Effekt der Aktivierung des von-Willebrand-Faktors genauer zu erforschen, mussten die Wissenschaftler zunächst eine Versuchsanordnung finden, die die Bedingungen in den Blutkapillaren widerspiegelt. Dafür nutzten sie vor allem die in den letzten Jahren in Augsburg entwickelte Methode des so genannten "Chip Labors": Auf einer Chipoberfläche mit einer Größe von einigen Millimetern wird hier unter Nutzung von akustischen Oberflächenwellen ("Nanoerdbeben") eine Strömung in einem nur wenige Mikrometer breiten Kanal erzeugt.

Von der 2 Mikrometer großen Kugel zum 100 Mikrometer langen Faden

Bei den in diesem "Chip Labor" erzeugten verschiedenen Strömungsgeschwindigkeiten ergab die Beobachtung des von-Willebrand-Faktors Erstaunliches: Sehr hohe Fließgeschwindigkeiten führen dazu, dass der VWF plötzlich seine Form ändert und von einer ca. 2 Mikrometer großen Kugel zu einem 100 Mikrometer langen Faden wird. Dieser Vorgang konnte mit Hilfe theoretischer Modelle in computergestützten Simulationen nachgespielt werden. Durch diese Entfaltung werden Bindungsstellen zur Verfügung gestellt, die vorher im Inneren der Kugel lagen. Mit diesen Bindungsstellen kann der VWF nun sehr effektiv an verschiedene Eiweiße, z. B. an Kollagene, der verletzten Gefäßwand anbinden. Zudem kommt es unter dauerhaft starker Strömung zur Quervernetzung von mehreren VWF-Fäden. An dieses Faser-Netzwerk können Blutplättchen leicht und verlässlich anbinden, was zur effektiven Bildung eines kleinen Blutpfropfens und damit zum Wundverschluss führt.

Grundlage für neue Therapieansätze

Im Ergebnis liefert die Zusammenarbeit der Münsteraner Mediziner und der NIM-Physiker aus Augsburg und München damit fundamental neue Einsichten zum besseren Verständnis von Blutgerinnungsstörungen. Diese neuen Einsichten lassen Gefäßkrankheiten wie z. B. die Arteriosklerose in einem neuen, medizinisch-physikalischen Licht erscheinen, das zweifellos zu neuartigen Therapieansätzen führen wird.

Weitere Informationen:
http://www.pnas.org/papbyrecent.shtml - Originalbeitrag
http://www.physik.uni-augsburg.de/exp1/ - Arbeitsgruppe Universität Augsburg
http://derma.klinikum.uni-muenster.de/mitarbeiter/index.html - Arbeitsgruppe Universität Muenster
http://einrichtungen.physik.tu-muenchen.de/T37/ - Arbeitsgruppe TU Muenchen
http://www.nano-initiative-munich.de/ - Nanosystems Initiative Munich
Korrektur vom 02.05.2007
Ansprechpartner:
Dr. Matthias F. Schneider
Institut für Physik
Universität Augsburg
Universitätsstraße 1
D-86159 Augsburg
Telefon: +49 (0)821/598-3311
Fax: +49 (0)821/598-3225
matthias.schneider@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp1/schneider/schneider.html

Weitere Berichte zu: Blutgerinnung Nanosystem VWF

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie