Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen beim Tunneln erwischt

05.04.2007
Ein internationales Forscherteam beobachtet erstmals den quantenmechanischen Tunnelvorgang
Wir müssen einen Berg erklimmen, um ihn zu überwinden - in der Quantenphysik geht das auch anders: Objekte können auf die andere Seite eines Hügels gelangen, indem sie ihn einfach durchtunneln, anstatt mühsam über ihn zu klettern. Ein internationales Forscherteam um Prof. Ferenc Krausz vom Max-Planck-Institut für Quantenoptik hat nun erstmals Elektronen bei diesem Tunnelprozess beobachtet. Dieser Vorgang ist für die Ionisation von Atomen unter dem Einfluss starker elektromagnetischer Felder verantwortlich: Die Elektronen überwinden die anziehende Kraft des Atomkerns, indem sie durch einen Potenzialwall tunneln. Mit ultrakurzen Laserpulsen haben die Wissenschaftler nun diskrete Ionisationsstufen in diesem Prozess nachgewiesen, die jeweils einige 100 Attosekunden dauern, also ein Bruchteil einer Billiardstel Sekunde.
Die Ergebnisse tragen entscheidend zu einem tieferen Verständnis bei, wie sich Elektronen in Atomen und Molekülen bewegen.

So wie die Schwerkraft einen Körper auf dem Boden eines Tals zur Ruhe kommen lässt, so halten die Kernkraft, die Protonen und Neutronen zum Atomkern zusammenbindet, und die elektrische Kraft, die die negativ geladenen Elektronen mit dem positiv geladen Atomkern zu einem Atom zusammenfügt, diese Teilchen innerhalb eines winzig kleinen Raumes fest. Dieser Bindungseffekt lässt sich ebenfalls durch eine Art Tal darstellen, das die Physiker auch Potenzial nennen. In der Welt der Quantenteilchen gehört es gewissermaßen zur Tagesordnung, den Wall, der den Potenzialtopf umgibt, zu durchtunneln. Ein internationales Forscherteam um Ferenc Krausz hat die Elektronen nun dabei ertappt, wie sie unter dem Einfluss von Laserlicht durch das Bindungspotenzial des Atomkerns tunneln. Die Physiker nutzten dafür die neuen Werkzeuge der Attosekundenmetrologie. "Unser Ergebnis bestätigt zum ersten Mal in einer Echtzeitbeobachtung die theoretischen Vorhersagen der Quantenmechanik", sagt Ferenc Krausz, Direktor am Max-Planck-Institut für Quantenoptik und Leiter des Wissenschaftlerteams.

Der Tunnel-Effekt lässt sich aus dem Wellencharakter jedes Teilchens erklären. Makroskopische Objekte besitzen allerdings eine extrem geringe Tunnelwahrscheinlichkeit, weshalb dieses Phänomen hier noch nie beobachtet worden ist. Im Gegensatz dazu können die Teilchen des Mikrokosmos mit einer durchaus bedeutenden Wahrscheinlichkeit durch Gebiete tunneln, in denen sie sich nach den Gesetzen der klassischen Physik gar nicht aufhalten dürften. Der Tunnelprozess wird für so verschiedene Prozesse wie den Zerfall von Atomkernen oder den Schaltvorgang in elektronischen Bauelementen verantwortlich gemacht. Da er aber nur extrem kurze Zeit dauert, ist er bislang noch nie in Echtzeit beobachtet worden.

Krausz und seine Mitarbeiter haben ihn jetzt mit Hilfe zweier Lichtpulse live verfolgt: einem intensiven Puls aus nur wenigen Wellenzügen roten Laserlichts, und einem Attosekunden-Puls im Extremem Ultravioletten, der mit dem roten Puls perfekt synchronisiert ist. Das elektrische Feld der Laserpulse übt periodisch starke Kräfte auf die Elektronen aus: Zu den Zeiten maximaler Stärke drückt die Lichtkraft den Potenzialwall nach unten. Für einen kurzen Augenblick um den Höhepunkt des Wellenbergs herum hat das Elektron die Chance, die Barriere zu durchdringen und dem Atom zu entkommen. Diese Möglichkeit besteht ausschließlich bei den Wellenbergen, das heißt nur in einem extrem kurzen Zeitintervall von einem Bruchteil einer Femtosekunde, einer Trillionsten Sekunde.

Kein Instrument kann den Tunnel-Vorgang direkt auflösen. Nachweisen lassen sich nur die Endprodukte, das heißt die Atome, die im Anschluss an den Laserpuls in ein Elektron und ein positiv geladenes Ion zerfallen sind. Die Forscher mussten sich daher eines Tricks bedienen, indem sie als Untersuchungsobjekte Neonatome verwendeten. Hier befinden sich die Elektronen in abgeschlossenen Schalen, sind daher besonders fest gebunden und widersetzen sich den Bestrebungen des Laserpulses, sie aus dem Atom zu lösen. Nur Elektronen, die von einem Attosekunden-UV-Blitz getroffen werden, gelangen an die Peripherie des Atoms und können sich durch Tunneln aus dem Atom befreien. Daher können die Physiker nur Neonatome, die sie zuerst mit einem solchen Blitz präparieren, später mit einem roten Laserpuls ionisieren.
"Mit einem nur 250 Attosekunden dauernden UV-Puls, der zeitlich genau mit dem roten Laserpuls synchronisiert war, haben wir ein Elektron zu jedem beliebigen Zeitpunkt innerhalb der Laserwelle mit Attosekundenpräzision an die Peripherie befördert", erklärt Krausz. Die Forscher verschoben diesen Zeitpunkt, Schritt für Schritt, und maßen dabei die Zahl der Atome, die vom Laser ionisiert wurden. Auf diese Weise konnten sie den zeitlichen Verlauf des Ionisierungsprozesses rekonstruieren. Wie von der Theorie vorhergesagt, verließen die Elektronen die Atome in der unmittelbaren Nähe der intensivsten Wellenberge, wie aus den diskreten, mit den Wellenbergen zusammenfallenden Ionisationsstufen in Abb. 3 (grüne Linie) gut zu erkennen ist. Auf diesen Stufen verweilen die Elektronen weniger als 400 Attosekunden: Innerhalb einer derart kurzen Zeit werden die Elektronen durch die Lichtkraft aus den Atomen freigesetzt.

"Die Experimente gewähren nicht nur zum ersten Mal einen Einblick in die Dynamik des Elektronen-Tunnelns", sagt Krausz: "Wir haben zudem gezeigt, dass sich die Bewegung von Elektronen in Atomen oder Molekülen mit Hilfe des Laserfeld-induzierten Tunnelns in Echtzeit beobachten lässt." Auf der Basis dieser Erkenntnis und der so ermöglichten Kontrolle über die inneratomare Elektronenbewegung können Wissenschaftler in der Zukunft erforschen, wie sich die Grenzen der Mikroelektronik verschieben lassen, oder kompakte brillante Röntgenquellen entwickeln. Diese werden ihrerseits Fortschritte bei der Abbildung biologischer Objekte und der Strahlentherapie ermöglichen.
... mehr zu:
»Atom »Atomkern »Elektron »Laserpuls

[F.K.]

Pressebericht und Bilder unter: http://www.mpg.de/bilderBerichteDokumente/dokumentation/

pressemitteilungen/2007/pressemitteilung20070402/

Originalveröffentlichung:

M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher und F. Krausz
Attosecond real-time observation of electron tunnelling in atoms
Nature, 5. April 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Atomkern Elektron Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie