Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Einblick in das Molekülinnere

30.03.2007
Atome ertasten, Moleküle sehen - Rastersondenmikroskope geben seit wenigen Jahrzehnten Einblick in die Welt der kleinsten Teile. Experimentalphysiker der Universität Duisburg-Essen haben nun eine weitere Methode entwickelt, die die Elektronenlandschaft der Stoffe noch detaillierter abbildet. Die Ergebnisse sind in der neuesten Ausgabe der renommierten Wissenschaftszeitschrift Science nachzulesen.

Atome und Moleküle sind mit ihren Bruchteilen von milliardstel Metern viel zu klein für konventionelle Licht- und Elektronenmikroskope. Mit dem Rastertunnelmikroskop wird die Probe nicht mit einem schnellen Blick erfasst, sondern deren Oberfläche mit einer feinen Spitze "erfühlt". Linie um Linie fährt diese computergesteuert über das Objekt, und auf dem angeschlossenen Rechner entsteht Strich für Strich ein Bild von den Atomen.

Die Physiker Amin Bannani, Christian Bobisch und Prof. Rolf Möller von der Universität Duisburg-Essen suchten jetzt nach einer Methode, die noch mehr kann. Nämlich organische Moleküle sichtbar machen und einen Blick in deren Inneres werfen. Das Team konzentrierte sich dabei auf eine besondere Untergruppe der Elektronen, sogenannte ballistische Elektronen.

Das sind im Prinzip alle Fehlschüsse und Durchschüsse, die die Probe relativ ungestört passieren. Gerät ein Tunnelelektron hingegen zu sehr in den Wirkungsbereich eines Atomkerns oder der atomgebundenen Elektronen, wird es gestreut und erreicht nicht den Detektor. Bei dieser Methode kommt es darauf an, ob und wie sehr das Objekt den Elektronen "im Weg" ist. Das "wie sehr" lässt sich über verschieden hohe Spannungen herausfinden, die den Messelektronen gewissermaßen mehr oder weniger Schwung verleihen. Mit wenig Startenergie gerät ein getunneltes Elektron bereits in Randbereichen der Moleküle auf Abwege, während es mit einem energischeren Start selbst in den "weicheren" Molekülzonen kaum gestreut wird. Die zusätzliche Abbildung zeigt dann Kanäle auf, wo die Elektronen besonders gut durch die Probe transportiert werden.

... mehr zu:
»Atom »Elektron »Molekül

Die Qualität ihrer neuen Rasternahfeld- Elektronendurchsicht- Mikroskopie (scanning near-field electron transmission microscopy) haben die Forscher an zwei unterschiedlichen Molekülen erprobt: fußballförmigen Buckyballs aus je 60 Kohlenstoffatomen und dem komplexeren 3,4,9,10-Perylen-Tetracarboxylsäuredianhydrid (PTCDA), das recht flächig ist und dessen Form an einen Hundeknochen erinnert. Von beiden Verbindungen erhielten sie mindestens ebenso gute Bilder wie mit einem gewöhnlichen Rastertunnelmikroskop. Besonders beim Buckyball machte sich aber der Vorteil der ballistischen Elektronen bemerkbar. Mit höheren Spannungen trat immer besser der Hohlraum im Zentrum der kleinen Kugeln hervor - eine Struktur, die niemals zuvor mit einem Mikroskop gesehen wurde.

Weitere Infos: Prof. Rolf Möller, Tel. 0203/379-4220, Science 315: 1824-1828 (2007)

Beate Kostka | idw
Weitere Informationen:
http://www.exp.physik.uni-duisburg-essen.de/moeller/index.htm

Weitere Berichte zu: Atom Elektron Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE