Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Jagd nach der Dunklen Energie

30.03.2007
Max-Planck-Institut für extraterrestrische Physik entwickelt Röntgenteleskop eRosita / Raumfahrtagentur DLR unterstützt das Projekt mit 21 Millionen Euro

Man sieht sie nicht, man spürt sie nicht - und doch ist sie so stark, dass sie das Universum auseinandertreibt: Es geht um die bisher weitgehend unerforschte Dunkle Energie. Nach diesem geheimnisvollen Stoff soll das Röntgenteleskop eRosita (extended Roentgen Survey with an Imaging Telescope Array) von 2011 an fahnden. Der Grundstein für das internationale Projekt wurde vergangene Woche in Moskau gelegt, die Mittel für die Wissenschaftler aus München fließen nun zum 1. April 2007.


eRosita soll der neue Star am Himmel werden - hier ein Designentwurf des deutschen Röntgenteleskops. Bild: Max-Planck-Institut für extraterrestrische Physik

Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) hat mit der Zuwendung von 21 Millionen Euro den Weg für eRosita freigemacht. Die Forscher am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching bei München können nun mit der Entwicklung des Röntgenteleskops beginnen. Bereits am 23. März war in Moskau zwischen DLR und der russischen Agentur Roskosmos eine Vereinbarung, ein sogenanntes Memorandum of Understanding, unterzeichnet worden. Damit ist sichergestellt, dass das deutsche Röntgenteleskop auf einem russischen Satelliten fliegen kann.

"Ein lange gehegter Traum wird Wirklichkeit!", sagt Prof. Günther Hasinger, leitender Wissenschaftler des Projekts und Direktor am Max-Planck-Institut für extraterrestrische Physik. Der Galaxien-Späher soll die Tradition deutscher Astronomen bei der Beobachtung des Röntgenhimmels fortsetzen, die im Jahr 1990 mit dem ebenfalls am MPE entwickelten Satelliten Rosat begonnen hatte. Am Bau von eRosita wirken wissenschaftliche Institute ebenso mit wie die Industrie.

"Mit diesem anspruchsvollen und ehrgeizigen Projekt bauen wir in Deutschland unsere international starke Stellung in der Röntgenastronomie weiter aus", erklärt DLR-Vorstandsmitglied Ludwig Baumgarten. "Die hohen Standards und die enorme wissenschaftliche Erkenntnis, die wir bereits in der Vergangenheit mit der Mission Rosat und den Beteiligungen an XMM Newton und Chandra gesetzt und erworben haben, werden nun nochmals übertroffen", fügt er hinzu.

Das Röntgenteleskop aus Deutschland wird auf dem russischen Satelliten Spektrum-Röntgen-Gamma (SRG) installiert. Es besteht aus sieben einzelnen Spiegelsystemen mit knapp 36 Zentimetern Öffnung und jeweils 54 ineinander geschachtelten Spiegelschalen, die den gesamten Himmel parallel durchmustern werden. Die Kombination aus Sammelfläche, Gesichtsfeld und Auflösungsvermögen ist bisher unerreicht.

Im Brennpunkt jedes Röntgenspiegels sitzt eine CCD-Kamera (Charge Coupled Device). Die sieben elektronischen "Augen" müssen während des Betriebs auf eine Temperatur von minus 80 Grad gekühlt werden. In den Kameras steckt Know-how aus dem Halbleiterlabor, das die Max-Planck-Institute für Physik und extraterrestrische Physik in München unterhalten und aus dem die weltweit empfindlichsten Röntgendetektoren stammen - etwa für den europäischen Satelliten XMM-Newton und die beiden US-amerikanischen Marsrover Spirit und Opportunity.

Wie ist das Universum entstanden? Wie sieht seine Zukunft aus? Was lehren uns Geburt und Entwicklung von Galaxien über die Dynamik des Weltalls? Diese Fragen beschäftigen die Astrophysiker zu Beginn des 21. Jahrhunderts. Und erst seit Kurzem wissen sie, dass sie lediglich vier Prozent des Kosmos sehen. Etwa 73 Prozent der mittleren Energiedichte des Universums stecken in der Dunklen Energie, weitere 23 Prozent bestehen aus nicht-baryonischer Dunkler Materie. Die Eigenschaften der beiden "Stoffe" sind noch weitgehend unbekannt. Hier setzt die Mission eRosita an: Der Satellit soll die unterschiedlichen Anteile der kosmischen Energiedichte mit bisher unerreichter Genauigkeit bestimmen.

Dazu wird eRosita rund 100 000 Galaxienhaufen unter die Lupe nehmen, also Ansammlungen von Tausenden einzelnen Milchstraßensystemen. Die fliegende Sternwarte registriert die Röntgenstrahlung des heißen Gases, das sich jeweils im Zentrum eines Galaxienhaufens ansammelt. Die Beobachtungen geben die räumliche Verteilung der großräumigen Strukturen aber nicht nur zum gegenwärtigen Zeitpunkt wieder; weil die Haufen sehr weit entfernt sind und das Licht entsprechend lange braucht, um von diesen Objekten zu uns zu gelangen, bedeutet ein Blick in die Ferne gleichzeitig eine Reise in die Vergangenheit.

Aus dem Vergleich mit der Gegenwart, also aus der Beobachtung nahe gelegener Haufen, können die Astronomen auf die zeitliche Variation der Strukturen schließen - und damit auf die Rolle der Dunklen Energie, die als treibende Kraft hinter der Veränderung steckt. "Die Auswirkungen der Dunklen Energie sind extrem schwach und werden erst auf sehr großen Skalen wirksam, so dass man praktisch das ganze sichtbare Universum braucht, um sie zu studieren. Und genau das leistet eRosita", sagt Günther Hasinger.

eRosita soll im Jahr 2011 von Baikonur aus an Bord des russischen Satelliten Spektrum-Röntgen-Gamma (SRG) mit einer Soyus-Fregat-Rakete auf eine 600 Kilometer hohe Erdumlaufbahn gebracht werden und mindestens fünf Jahre im All arbeiten.

An dem Projekt sind zahlreiche Institutionen und Firmen beteiligt: Max-Planck-Institut für extraterrestrische Physik und Max-Planck-Institut für Astrophysik, beide aus Garching bei München, Institut für Astronomie und Astrophysik der Universität Tübingen, Astrophysikalisches Institut Potsdam, Universitätssternwarte Hamburg, Remeis-Sternwarte Bamberg, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Roskosmos und Space Research Institute, beide aus Moskau, Kayser-Threde GmbH, Carl Zeiss AG und Medialario (Italien).

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: DLR Luft- und Raumfahrt Röntgenteleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten