Hamburger Wissenschaftler erforschen weltweit erstmalig die magnetischen Eigenschaften von Nichtleitern auf atomarer Ebene

Der Magnetismus ist der Menschheit schon seit langer Zeit bekannt:
Der Legende nach wurde das Phänomen des Magnetismus von dem alten griechischen Schäfer Magnes vor etwa 4000 Jahren entdeckt. Als er seine Herde in der Magnesia genannten Region im Norden Griechenlands weiden lies, blieben die Nägel seiner Schuhe und die Metallspitze seines Stocks an einem großen schwarzen Stein kleben. Diese Steine nannte man „Magnetit“, wahrscheinlich in Anlehnung an Magnesia oder Magnes. Wegen der magisch anmutenden Kräfte des Magnetits hielt sich sehr lange der Aberglaube, nach dem von diesen Steinen magische Kräfte ausgehen, die Krankheiten heilen und böse Geister vertreiben können.

Um das Jahr 1000 entdeckte man in China den Kompass und konnte ab diesem Zeitpunkt auch ohne Sonne und Sterne auf den Weltmeeren navigieren. Aber man war noch sehr weit vom wissenschaftlichen Verständnis des Phänomens entfernt und tatsächlich ist die Geschichte der Naturwissenschaften zum großen Teil eine Geschichte des Magnetismus.

In unserer heutigen Welt sind Anwendungen auf Basis des Magnetismus nicht mehr wegzudenken. Der Magnetismus bildet die unverzichtbare Grundlage für Sensoren im Auto, Computerfestplatten zur Datenspeicherung, das Telefon, das Fernsehen und die Magnetspinresonanz in der Medizin. Die Informationsverarbeitung und Datenspeichertechnologie sind dabei die Triebfedern der aktuellen Magnetismusforschung, denn die rasante Entwicklung der Computertechnik in den letzten Jahren verlangt nach Speichermedien mit immer höherer Datenkapazität. Um auf gleichem oder sogar kleinerem Raum mehr Informationen zu speichern, müssen die magnetischen Elemente der Speichermedien immer kleiner und kleiner werden, bis sie nur noch einzelne Atome groß sind. Aus diesem Grund wird die Untersuchung der magnetischen Eigenschaften einzelner Atome für die magnetische Datenspeichertechnik immer interessanter, denn wenn es gelänge einen Datenträger zu entwickeln, auf dem digitale Informationen Bit für Bit in benachbarte Einzelatome gespeichert werden können, wäre es möglich, die gesamte Literatur der Menschheit auf der Größe einer Briefmarke zu archivieren.

Im Jahr 2000 gelang es Hamburger Wissenschaftlern zum ersten Mal mit Hilfe der Spinpolarisierten Rastertunnelmikroskopie, die magnetische Information einzelner Atome auszulesen. Diese Methode ist ein gewaltiger Schritt in der Erforschung des Magnetismus, hat jedoch einen entschiedenen Nachteil: Es können mit der Spinpolarisierten Rastertunnelmikroskopie nur elektrisch leitfähige Materialien untersucht werden, viele nichtleitende, aber trotzdem magnetische Substanzen konnten bisher nicht auf atomarer Skala untersucht werden. Dabei scheinen aber gerade nichtleitende magnetische Substanzen für die Konstruktion zukünftiger Speichermedien enorm wichtig zu sein.

Wie die Zeitschrift „Nature“ diese Woche berichtet, gelang es Diplom-Physiker Uwe Kaiser, Dr. Alexander Schwarz und Prof. Roland Wiesendanger von der Universität Hamburg weltweit erstmalig dieses Problem zu lösen und die magnetischen Eigenschaften einzelner Nickeloxid-Atome abzubilden. Dazu benutzten sie ein selbst entwickeltes Rasterkraftmikroskop mit einer magnetischen Spitze: ein Magnetisches Austauschkraftmikroskop, mit dem Ferromagnete, Ferrimagnete, magnetische Einzelatome oder magnetische Moleküle unabhängig von ihrer Leitfähigkeit Atom für Atom untersucht werden können.
Die Idee zur magnetischen Austauschkraftmikroskopie existiert schon seit Anfang der neunziger Jahre. Allerdings ist die moderne Messtechnik erst jetzt in der Lage, die unglaublich geringen magnetischen Wechselwirkungen zwischen einzelnen Atomen reproduzierbar zu messen. Weltweit gibt es bisher nur sehr wenige Rasterkraftmikroskope, die so gut konstruiert sind und bei tiefen Temperaturen von -270°C arbeiten, um die notwendige Stabilität, hohe Auflösung und Kraftsensitivität zu erreichen, wie das, an dem die Hamburger Wissenschaftler forschen.

Mit dieser hochauflösenden, magnetisch-sensitiven Messtechnik wurde die Grundlage zur Weiterentwicklung von Bauelementen in der Datenspeichertechnologie und Sensorik auf der Nanometerskala geschaffen, und es eröffnen sich damit viele neue Möglichkeiten für industrienahe Anwendungen. Allerdings sind noch eine ganze Reihe instrumenteller Fortschritte notwendig, damit die magnetische Austauschkraftmikroskopie auch auf kommerziell erhältlichen Rasterkraftmikroskopen erfolgreich betrieben werden kann.

Weitere Informationen:

Dipl.-Chem. Heiko Fuchs
Kompetenzzentrum HanseNanoTec
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel.: (0 40) 4 28 38 – 69 59
Fax.: (0 40) 4 28 38 – 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer