Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hamburger Wissenschaftler erforschen weltweit erstmalig die magnetischen Eigenschaften von Nichtleitern auf atomarer Ebene

29.03.2007
Diese Woche in der Zeitschrift "Nature"
Der Magnetismus ist der Menschheit schon seit langer Zeit bekannt:
Der Legende nach wurde das Phänomen des Magnetismus von dem alten griechischen Schäfer Magnes vor etwa 4000 Jahren entdeckt. Als er seine Herde in der Magnesia genannten Region im Norden Griechenlands weiden lies, blieben die Nägel seiner Schuhe und die Metallspitze seines Stocks an einem großen schwarzen Stein kleben. Diese Steine nannte man "Magnetit", wahrscheinlich in Anlehnung an Magnesia oder Magnes. Wegen der magisch anmutenden Kräfte des Magnetits hielt sich sehr lange der Aberglaube, nach dem von diesen Steinen magische Kräfte ausgehen, die Krankheiten heilen und böse Geister vertreiben können.

Um das Jahr 1000 entdeckte man in China den Kompass und konnte ab diesem Zeitpunkt auch ohne Sonne und Sterne auf den Weltmeeren navigieren. Aber man war noch sehr weit vom wissenschaftlichen Verständnis des Phänomens entfernt und tatsächlich ist die Geschichte der Naturwissenschaften zum großen Teil eine Geschichte des Magnetismus.

In unserer heutigen Welt sind Anwendungen auf Basis des Magnetismus nicht mehr wegzudenken. Der Magnetismus bildet die unverzichtbare Grundlage für Sensoren im Auto, Computerfestplatten zur Datenspeicherung, das Telefon, das Fernsehen und die Magnetspinresonanz in der Medizin. Die Informationsverarbeitung und Datenspeichertechnologie sind dabei die Triebfedern der aktuellen Magnetismusforschung, denn die rasante Entwicklung der Computertechnik in den letzten Jahren verlangt nach Speichermedien mit immer höherer Datenkapazität. Um auf gleichem oder sogar kleinerem Raum mehr Informationen zu speichern, müssen die magnetischen Elemente der Speichermedien immer kleiner und kleiner werden, bis sie nur noch einzelne Atome groß sind. Aus diesem Grund wird die Untersuchung der magnetischen Eigenschaften einzelner Atome für die magnetische Datenspeichertechnik immer interessanter, denn wenn es gelänge einen Datenträger zu entwickeln, auf dem digitale Informationen Bit für Bit in benachbarte Einzelatome gespeichert werden können, wäre es möglich, die gesamte Literatur der Menschheit auf der Größe einer Briefmarke zu archivieren.

Im Jahr 2000 gelang es Hamburger Wissenschaftlern zum ersten Mal mit Hilfe der Spinpolarisierten Rastertunnelmikroskopie, die magnetische Information einzelner Atome auszulesen. Diese Methode ist ein gewaltiger Schritt in der Erforschung des Magnetismus, hat jedoch einen entschiedenen Nachteil: Es können mit der Spinpolarisierten Rastertunnelmikroskopie nur elektrisch leitfähige Materialien untersucht werden, viele nichtleitende, aber trotzdem magnetische Substanzen konnten bisher nicht auf atomarer Skala untersucht werden. Dabei scheinen aber gerade nichtleitende magnetische Substanzen für die Konstruktion zukünftiger Speichermedien enorm wichtig zu sein.

Wie die Zeitschrift "Nature" diese Woche berichtet, gelang es Diplom-Physiker Uwe Kaiser, Dr. Alexander Schwarz und Prof. Roland Wiesendanger von der Universität Hamburg weltweit erstmalig dieses Problem zu lösen und die magnetischen Eigenschaften einzelner Nickeloxid-Atome abzubilden. Dazu benutzten sie ein selbst entwickeltes Rasterkraftmikroskop mit einer magnetischen Spitze: ein Magnetisches Austauschkraftmikroskop, mit dem Ferromagnete, Ferrimagnete, magnetische Einzelatome oder magnetische Moleküle unabhängig von ihrer Leitfähigkeit Atom für Atom untersucht werden können.
Die Idee zur magnetischen Austauschkraftmikroskopie existiert schon seit Anfang der neunziger Jahre. Allerdings ist die moderne Messtechnik erst jetzt in der Lage, die unglaublich geringen magnetischen Wechselwirkungen zwischen einzelnen Atomen reproduzierbar zu messen. Weltweit gibt es bisher nur sehr wenige Rasterkraftmikroskope, die so gut konstruiert sind und bei tiefen Temperaturen von -270°C arbeiten, um die notwendige Stabilität, hohe Auflösung und Kraftsensitivität zu erreichen, wie das, an dem die Hamburger Wissenschaftler forschen.

Mit dieser hochauflösenden, magnetisch-sensitiven Messtechnik wurde die Grundlage zur Weiterentwicklung von Bauelementen in der Datenspeichertechnologie und Sensorik auf der Nanometerskala geschaffen, und es eröffnen sich damit viele neue Möglichkeiten für industrienahe Anwendungen. Allerdings sind noch eine ganze Reihe instrumenteller Fortschritte notwendig, damit die magnetische Austauschkraftmikroskopie auch auf kommerziell erhältlichen Rasterkraftmikroskopen erfolgreich betrieben werden kann.

Weitere Informationen:

Dipl.-Chem. Heiko Fuchs
Kompetenzzentrum HanseNanoTec
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax.: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.hansenanotec.de
http://www.nanoscience.de
http://www.nature.com/nature/journal/v446/n7135/full/nature05617.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit

Mit Drohnen Wildschweinschäden schätzen

12.12.2017 | Ökologie Umwelt- Naturschutz

Tumoren ordentlich einheizen

12.12.2017 | Biowissenschaften Chemie