Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millionen-Vertrag für 7-Tesla Magnetresonanztomographen unterzeichnet

20.03.2007
Das Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch, die Physikalisch-Technische Bundesanstalt (PTB) Berlin und die Firma Siemens haben im MDC einen Vertrag über einen 7-Tesla-Ganzkörper-Magnetresonanztomographen (7-Tesla-MRT) für die medizinische Forschung unterzeichnet.

Er hat ein Finanzvolumen von fast 8 Millionen Euro. Gleichzeitig schlossen die drei Partner einen Vertrag über die Zusammenarbeit auf dem Gebiet "Bildgebungsmethoden an Ultra-Hochfeld-MR-Systemen".

Das ist die größte Kooperation des MDC mit einem Industriepartner. Der 7-Tesla-MRT soll ab Sommer 2008 betriebsbereit sein. Weltweit einmalig ist sein Einsatz in der Herz-Kreislauf-Forschung. Darüber hinaus wird er auch in der Krebs- sowie Hirnforschung erprobt. Von den insgesamt sieben Siemens Hochfeld-MRTs in Deutschland sind damit allein drei in Forschungszentren der Helmholtz-Gemeinschaft im Aufbau. Das sind neben dem MDC das Deutsche Krebsforschungszentrum (DKFZ) in Heidelberg (7-Tesla-MRT) und das Forschungszentrum Jülich (9,4-Tesla-MRT). Das MDC, das sich aus Mitteln des Bundes und des Landes Berlin finanziert, trägt mit 6,5 Millionen Euro den größeren Teil der Finanzierung des Millionen-Projekts, während 1,5 Millionen Euro von der PTB kommen.

Größte Industriekooperation des MDC

... mehr zu:
»MRT »Magnetresonanztomographe »PTB

"Es ist die größte Kooperation des MDC mit einem Industrieunternehmen", betonte Prof. Dr. Walter Birchmeier, MDC-Stiftungsvorstand, bei der Unterzeichnung des Vertrags. Weiter sagte er: "Der Hochfeld-Magnet ist Teil des vom MDC geplanten klinischen Forschungszentrums, des Experimental and Clinical Research Center (ECRC). Er wird aber auch Universitäten sowie anderen außeruniversitären Forschungseinrichtungen im Großraum Berlin zur Verfügung stehen". Partner des 7-Tesla-MRT Projekt des MDC sind neben Siemens und der PTB die Charité - Universitätsmedizin Berlin mit den Standorten Mitte, Benjamin Franklin sowie Berlin-Buch mit den beiden Spezialkliniken Franz-Volhard-Herz-Kreislaufklinik und Robert-Rössle-Klinik für Tumorerkrankungen. Zu den Kooperationspartnern gehören weiter das Deutsche Herzzentrum Berlin sowie das Leibniz-Institut für Molekulare Pharmakologie (FMP).

Der Präsident der PTB, Prof. Dr. Ernst Otto Göbel, sagte: "Ultrahochfeld MRT ist eine messtechnische und diagnostische Herausforderung erster Klasse. Derartige Herausforderungen lassen sich nur interdisziplinär bewältigen. Das hiesige 7-Tesla-MRT Projekt besitzt in dieser Hinsicht Modellcharakter und demonstriert nicht zuletzt auch die Offenheit und Kompetenz der Ressortforschung zur fach- und institutionsübergreifenden Kooperation."

"Bahnbrechende wissenschaftliche Erkenntnisse und richtungweisende Innovationen können nur entstehen, wenn die führenden Köpfe auf einem Gebiet zusammenarbeiten. Für uns ist daher der intensive Austausch mit weltweit anerkannten Kliniken und wissenschaftlichen Einrichtungen ein wichtiger Erfolgsfaktor", betonte Prof. Dr. Erich R. Reinhardt, Mitglied des Vorstands der Siemens AG und Vorsitzender des Bereichsvorstandes von Siemens Medical Solutions. "Wir wollen die Erkenntnisse dieser intensiven und vielversprechenden Kooperation nutzen, um neuartige Verfahren und Lösungen zu entwickeln, welche die Qualität der Versorgung steigern und gleichzeitig die Kosten senken".

Käfig aus 230 Tonnen Stahl

Der 7-Tesla-MRT wird auf dem Campus Berlin-Buch aufgebaut. Aufgrund seiner hohen magnetischen Feldstärke von 7 Tesla (das entspricht dem 140.000-fachen des Erdmagnetfelds; Tesla ist die Einheit für den Magnetfluss) wird die rund 35 Tonnen schwere Magnetspule des MRT mit einem Käfig aus 230 Tonnen Stahl abgeschirmt. Mit dem Bau des Gebäudes soll noch in diesem Frühjahr begonnen werden. Der Einbau der zylinderförmigen Magnetspule, die 3,40 Meter lang ist und einen Durchmesser von 2,40 Meter hat, soll im Frühjahr 2008 erfolgen, so dass das MRT-Gerät im Sommer des gleichen Jahres in Betrieb gehen kann.

Der Körper des Menschen besteht zu etwa 65 Prozent aus Wasser, das Wasserstoffatome enthält. Im starken Magnetfeld eines Magnetresonanztomographen, auch Kernspintomographen genannt, richten sich die natürlichen Eigendrehimpulse (Kernspins) von Wasserstoffatomkernen im Körper aus. Durch starke Hochfrequenzpulse können die Kernspins aus der Feldrichtung herausgedreht werden, fallen danach aber in ihre ursprüngliche Ausrichtung zurück. Dabei geben sie Energie in Form elektromagnetischer Wellen ab, die als Resonanz gemessen wird. Die je nach Gewebe unterschiedlichen Signale werden in Bilder umgewandelt. Je höher die Feldstärke, desto mehr Signale liefert ein MRT. Mit einem 7-Tesla-MRT kann deshalb eine höhere Bildauflösung erzielt werden, als mit Geräten kleinerer Feldstärken von 1,5 und 3-Tesla, die bereits in der Klinik eingesetzt werden.

Weltweit einmalig: 7-Tesla-MRT wird in der Herz-Kreislauf-Forschung erprobt
Unter den Ganzkörper-Magnetresonanztomographen ist der 7-Tesla-MRT der bisher stärkste, doch ist dieser Bereich noch wenig erforscht. Bisher installierte Systeme dieser Feldstärke kommen fast ausschließlich bei der Bildgebung des Gehirns zum Einsatz. Gemeinsam mit Physikern der PTB wollen die Forscher in Berlin-Buch deshalb die technischen Möglichkeiten des 7-Tesla-MRT für die Untersuchung des Menschen auch in anderen medizinischen Gebieten als der Neurologie ausloten. Sie erhoffen sich mit dem 7-Tesla-MRT Einblick in kleinste Strukturen, darunter einzelne Zellen, gar einzelne Moleküle sowie Stoffwechselvorgänge. Ziel ist, Krankheitsrisiken und Krankheitsprozesse sehr früh aufzuspüren.

Weltweit einmalig ist der Einsatz des 7-Tesla-MRTs des MDC in der Herz-Kreislauf-Forschung. Ein Forschungsprojekt untersucht beispielsweise Entzündungen der Blutgefäßwände und Arteriosklerose (Verkalkungen der Blutgefäße), die Herzinfarkte und Schlaganfälle auslösen können. Schwerpunkte sind weiter die Krebsforschung, wo etwa "Wächter-Lymphknoten" als Frühwarnsystem zum Aufspüren von Metastasen bei Brustkrebs und Schwarzem Hautkrebs erforscht werden, sowie die Neurowissenschaften. In Berlin-Buch arbeiten Forscher auch fächerübergreifend. Dabei wollen sie sich zum Beispiel zunutze machen, dass neurologische und kardiologische Krankheitsbilder wie etwa Schlaganfall und Herzinfarkt auf ähnlichen Mechanismen beruhen.

Der Vorteil von Magnetresonanztomographen ist, dass Patienten in der Magnetröhre keiner Strahlenbelastung ausgesetzt sind und die Untersuchung berührungs- und schmerzfrei ist. Allerdings können Geräte hoher Feldstärke Schwindelgefühle auslösen, die aber aufhören, sobald ein Betroffener den MRT verlässt. Ein Nachteil ist auch die sehr hohe Lärmbelastung, die jedoch mit Schallschutzmaßnahmen vermindert werden kann.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: MRT Magnetresonanztomographe PTB

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie