Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Lichtquanten auf Knopfdruck

12.03.2007
Physiker am Max-Planck-Institut für Quantenoptik machen ein Rubidiumatom zu einem Einzel-Photon-Server

Schaltet man eine Glühlampe ein, dann erhellen sofort Milliarden von Photonen, die Elementarteilchen des Lichtes, den Raum. Wem das zu viele sind, der sollte eine Kerze anzünden. Wer es aber auf ganz wenige Photonen, oder gar auf ein einziges per Knopfdruck abgesehen hat, der muss sich etwas Besonderes ausdenken. Max-Planck-Forscher um Prof. Gerhard Rempe vom Garchinger Max-Planck-Institut für Quantenoptik haben nun neutrale Rubidiumatome einzeln gespeichert und zu einem Einzel-Photonen-Server umfunktioniert. Dies ist wichtig für zukünftige Experimente zur Quanteninformationsverarbeitung. Die Wissenschaftler wollen quantenmechanische Phänomene ausnutzen, um effizienter als mit klassischen Computern zu rechnen. (Nature Physics online, 11. März 2007)


Ein einzelnes Atom, das innerhalb eines Resonators in einer Lichtfalle gespeichert ist, emittiert nach Anregung durch einen Laserpuls ein einzelnes Photon in Richtung Resonatorachse. Nachdem die Einzel-Photon-Quelle charakterisiert wurde, können die Photonen an einen Benutzer weitergeleitet werden. Bild: MPI für Quantenoptik

Ein einzelnes Atom kann immer nur ein Photon auf einmal aussenden. Einzelne Photonen können also erzeugt werden, wenn man ein einzelnes Atom mit einem Laserpuls anregt. Wird das Atom zwischen zwei stark reflektierenden Spiegeln, einem sogenannten Resonator, gespeichert, dann fliegen alle Photonen, die das Atom bei wiederholtem Beschuss mit Laserpulsen emittiert, in Richtung der Resonatorachse. Verglichen mit anderen Methoden der Photonenerzeugung liefert dieses Verfahren Lichtquanten sehr einheitlicher Energie. Auch können die Eigenschaften der Photonen gesteuert werden. Man kann sie beispielsweise ununterscheidbar machen - eine Voraussetzung, um sie für Rechnungen in Quantencomputern zu verwenden. Auf der anderen Seite war es bis heute nicht möglich, ein elektrisch neutrales Atom, das einzelne Photonen emittiert, lange genug in einem Resonator festzuhalten, um einen praktisch verwertbaren Photonenstrom zu bekommen.

2005 gelang es einem Wissenschaftlerteam um Prof. Rempe vom Max-Planck-Institut für Quantenoptik, die Speicherzeiten für ein einzelnes Atom mit Hilfe einer Resonator-Kühlung signifikant zu steigern. Nun zeigen die Wissenschaftler, dass sie diese dreidimensionale Kühlung mit der Erzeugung einzelner Photonen so kombinieren können, dass ein einzelnes Atom bis zu 300 000 Photonen abstrahlt. Da die Verweilzeit des Atoms im Resonator sehr viel größer ist als die Zeit, die es braucht, das Atom durch Einfangen und Kühlen bereit zu stellen, können einzelne Photonen fast jederzeit erzeugt werden. Das ermöglicht es, die Photonen an einen Nutzer weiterzuleiten: das System arbeitet als Einzel-Photonen-Server.

In dem Experiment werden zunächst Rubidiumatome innerhalb einer Vakuumkammer auf extrem tiefe Temperaturen gekühlt. Anschließend leiten die Wissenschaftler ultrakalte Atome über eine "Lichtfalle" in den optischen Resonator, und laden sie danach in eine stehende Lichtwelle, worin die Atome festgehalten werden. Zusätzlich beschießt ein Laser die Atome von der Seite mit Lichtpulsen und regt sie damit zum Leuchten an - die Atome emittieren einzelne Photonen.

Nach einer kurzen Zeit befindet sich nur noch ein einzelnes Atom im Resonator, jetzt kann also ein Strom einzelner Photonen erzeugt werden. Zwischen zwei aufeinander folgenden Emissionen wird das Atom immer wieder gekühlt, damit es nicht auf Grund thermischer Bewegung aus dem Resonator herausfliegt. Um zu überprüfen, ob bei jedem Laserpuls nur ein Photon ausgesandt wird, leiten die Forscher den Photonenstrom auf einen Strahlteiler, der die Photonen auf zwei Detektoren lenkt. Ein einzelnes Photon wird in einem der beiden Detektoren detektiert. Würde mehr als ein Photon erzeugt, käme es zu einer Koinzidenz, das heißt beide Detektoren würden gleichzeitig ein Signal melden. Die Abwesenheit solcher Koinzidenzen in dem vorliegenden Experiment beweist, dass bei jedem Laserpuls immer genau ein Photon ausgestrahlt wird.

Mit der nun veröffentlichten Arbeit sind die Max-Planck-Forscher der Quanteninformationsverarbeitung mit Photonen einen großen Schritt näher gekommen. Mit einem funktionierenden Einzel-Photonen-Server lassen sich solche Herausforderungen wie die deterministische Verschränkung von Atom-Photon- und Atom-Atom-Paaren in Angriff nehmen.

Originalveröffentlichung:

Markus Hijlkema , Bernhard Weber, Holger P. Specht, Simon C. Webster, Axel Kuhn, Gerhard Rempe
A Single-Photon Server with Just One Atom
Nature Physics online, 11. März 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Detektoren Lichtquanten Photon Quantenoptik Resonator Rubidiumatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz