Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Lichtquanten auf Knopfdruck

12.03.2007
Physiker am Max-Planck-Institut für Quantenoptik machen ein Rubidiumatom zu einem Einzel-Photon-Server

Schaltet man eine Glühlampe ein, dann erhellen sofort Milliarden von Photonen, die Elementarteilchen des Lichtes, den Raum. Wem das zu viele sind, der sollte eine Kerze anzünden. Wer es aber auf ganz wenige Photonen, oder gar auf ein einziges per Knopfdruck abgesehen hat, der muss sich etwas Besonderes ausdenken. Max-Planck-Forscher um Prof. Gerhard Rempe vom Garchinger Max-Planck-Institut für Quantenoptik haben nun neutrale Rubidiumatome einzeln gespeichert und zu einem Einzel-Photonen-Server umfunktioniert. Dies ist wichtig für zukünftige Experimente zur Quanteninformationsverarbeitung. Die Wissenschaftler wollen quantenmechanische Phänomene ausnutzen, um effizienter als mit klassischen Computern zu rechnen. (Nature Physics online, 11. März 2007)


Ein einzelnes Atom, das innerhalb eines Resonators in einer Lichtfalle gespeichert ist, emittiert nach Anregung durch einen Laserpuls ein einzelnes Photon in Richtung Resonatorachse. Nachdem die Einzel-Photon-Quelle charakterisiert wurde, können die Photonen an einen Benutzer weitergeleitet werden. Bild: MPI für Quantenoptik

Ein einzelnes Atom kann immer nur ein Photon auf einmal aussenden. Einzelne Photonen können also erzeugt werden, wenn man ein einzelnes Atom mit einem Laserpuls anregt. Wird das Atom zwischen zwei stark reflektierenden Spiegeln, einem sogenannten Resonator, gespeichert, dann fliegen alle Photonen, die das Atom bei wiederholtem Beschuss mit Laserpulsen emittiert, in Richtung der Resonatorachse. Verglichen mit anderen Methoden der Photonenerzeugung liefert dieses Verfahren Lichtquanten sehr einheitlicher Energie. Auch können die Eigenschaften der Photonen gesteuert werden. Man kann sie beispielsweise ununterscheidbar machen - eine Voraussetzung, um sie für Rechnungen in Quantencomputern zu verwenden. Auf der anderen Seite war es bis heute nicht möglich, ein elektrisch neutrales Atom, das einzelne Photonen emittiert, lange genug in einem Resonator festzuhalten, um einen praktisch verwertbaren Photonenstrom zu bekommen.

2005 gelang es einem Wissenschaftlerteam um Prof. Rempe vom Max-Planck-Institut für Quantenoptik, die Speicherzeiten für ein einzelnes Atom mit Hilfe einer Resonator-Kühlung signifikant zu steigern. Nun zeigen die Wissenschaftler, dass sie diese dreidimensionale Kühlung mit der Erzeugung einzelner Photonen so kombinieren können, dass ein einzelnes Atom bis zu 300 000 Photonen abstrahlt. Da die Verweilzeit des Atoms im Resonator sehr viel größer ist als die Zeit, die es braucht, das Atom durch Einfangen und Kühlen bereit zu stellen, können einzelne Photonen fast jederzeit erzeugt werden. Das ermöglicht es, die Photonen an einen Nutzer weiterzuleiten: das System arbeitet als Einzel-Photonen-Server.

In dem Experiment werden zunächst Rubidiumatome innerhalb einer Vakuumkammer auf extrem tiefe Temperaturen gekühlt. Anschließend leiten die Wissenschaftler ultrakalte Atome über eine "Lichtfalle" in den optischen Resonator, und laden sie danach in eine stehende Lichtwelle, worin die Atome festgehalten werden. Zusätzlich beschießt ein Laser die Atome von der Seite mit Lichtpulsen und regt sie damit zum Leuchten an - die Atome emittieren einzelne Photonen.

Nach einer kurzen Zeit befindet sich nur noch ein einzelnes Atom im Resonator, jetzt kann also ein Strom einzelner Photonen erzeugt werden. Zwischen zwei aufeinander folgenden Emissionen wird das Atom immer wieder gekühlt, damit es nicht auf Grund thermischer Bewegung aus dem Resonator herausfliegt. Um zu überprüfen, ob bei jedem Laserpuls nur ein Photon ausgesandt wird, leiten die Forscher den Photonenstrom auf einen Strahlteiler, der die Photonen auf zwei Detektoren lenkt. Ein einzelnes Photon wird in einem der beiden Detektoren detektiert. Würde mehr als ein Photon erzeugt, käme es zu einer Koinzidenz, das heißt beide Detektoren würden gleichzeitig ein Signal melden. Die Abwesenheit solcher Koinzidenzen in dem vorliegenden Experiment beweist, dass bei jedem Laserpuls immer genau ein Photon ausgestrahlt wird.

Mit der nun veröffentlichten Arbeit sind die Max-Planck-Forscher der Quanteninformationsverarbeitung mit Photonen einen großen Schritt näher gekommen. Mit einem funktionierenden Einzel-Photonen-Server lassen sich solche Herausforderungen wie die deterministische Verschränkung von Atom-Photon- und Atom-Atom-Paaren in Angriff nehmen.

Originalveröffentlichung:

Markus Hijlkema , Bernhard Weber, Holger P. Specht, Simon C. Webster, Axel Kuhn, Gerhard Rempe
A Single-Photon Server with Just One Atom
Nature Physics online, 11. März 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Detektoren Lichtquanten Photon Quantenoptik Resonator Rubidiumatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie