Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Laserfernsehen ist fast marktreif

20.02.2007
Er starb bereits mit 37 Jahren, und dennoch kennt seinen Namen heute noch jedes Schulkind: Der ehemalige Bonner Physik-Professor Heinrich Hertz, der am 22. Februar 150 Jahre alt geworden wäre.

Ihm zu Ehren hat die Deutsche Telekom AG im Jahr 2000 an der Universität Bonn den Heinrich-Hertz-Stiftungslehrstuhl eingerichtet. An seiner alten Wirkungsstätte entwickeln Hertz' Erben heute unter anderem Strategien, um Laserlicht zu manipulieren. Ihre Erkenntnisse könnten in nicht allzu ferner Zukunft den Sprung in die Wohnzimmer schaffen: Schon in zwei Jahren sollen erste Laserfernseher auf den Markt kommen, die in Schärfe und Farbenpracht alle heute erhältlichen Geräte weit übertreffen.

Von 1889 bis zu seinem Tode fünf Jahre später lehrte und forschte der große Wissenschaftler in der Rheinstadt. Jeder Bonner Physikstudent kommt heute noch hautnah mit ihm in Berührung: In der Physikalischen Sammlung lagern zahlreiche Originalinstrumente, die Heinrich Hertz für seine Experimente mit elektromagnetischen Wellen nutzte. Darunter ist auch sein berühmter Dipol-Sender: Hertz ließ zwischen zwei halbrunden Kupferelektroden - dem Dipol - einen Funken überschlagen. Dadurch erzeugte er hochfrequente Radiowellen, die er mit einem ähnlichen Dipol in einigen Metern Entfernung wieder auffangen konnte. Wenn die Ausrichtung zwischen Sender und Empfänger stimmte, flogen dort dann ebenfalls die Funken. Das Radio verdankt (ebenso wie der Begriff "Rundfunk") diesem Effekt seine Existenz. Auch wenn wir eine Lampe einschalten, die Infrarot-Fernbedienung betätigen, uns im Solarium bräunen, mit der Mikrowelle Speisen zubereiten oder mobil telefonieren: Immer sind die von Heinrich Hertz nachgewiesenen "elektromagnetischen Wellen" im Spiel.

"Einen Dipol-Empfänger gibt es heute in jedem Handy", erklärt Professor Dr. Karsten Buse. Der 40-Jährige bekleidet an der Universität Bonn die nach Hertz benannte Stiftungsprofessur der Deutschen Telekom. Die Zusammenarbeit hat bereits zu einem knappen Dutzend Patenten geführt - zumeist im zukunftsträchtigen Gebiet der Laserphysik. "Die Firmen reißen uns die Mitarbeiter aus den Händen", sagt der Physiker nicht ohne Stolz. "Allein in der letzten Woche haben wir zwölf Anfragen aus der Industrie bekommen." Auch bei den großen US-amerikanischen Eliteschmieden wie Stanford oder dem MIT sind seine Diplomanden und Doktoranden gern gesehene Gäste.

... mehr zu:
»Laserfernseher »Laserlicht »Physik

Farbspiele

Eines der Spezialgebiete von Buses Arbeitsgruppe ist eine exotische chemische Verbindung, das so genannte Lithiumniobat. Die Substanz bildet Kristalle, an denen Heinrich Hertz wohl seine helle Freude gehabt hätte: Sie stecken nämlich gewissermaßen voller mikroskopisch kleiner Dipol-Antennen. Für Laserforscher ist diese Substanz extrem interessant: Mit ihr lässt sich nämlich vergleichsweise einfach und kostengünstig farbiges Laserlicht erzeugen.

Denn Laser, die direkt rot, grün oder blau leuchten, sind aufwändig und dazu noch extrem ineffizient. Bei gleichem Energieeinsatz strahlen die kleinen Halbleiterlaser viel kräftiger - dafür aber nur im unsichtbaren Infrarotbereich. Daher gehen die Erben von Heinrich Hertz einen Umweg: "Wenn wir einen Lithiumniobat-Kristall mit infrarotem Laserlicht beschießen, regen wir die Dipole darin so stark an, dass sie wie eine zu stark gezupfte Gitarrenseite zahlreiche Obertöne aussenden", erklärt Buse. Dabei vervielfacht sich die Frequenz des eingestrahlten Lichts; die Farbe verschiebt sich in den sichtbaren Bereich. "An unserem Lehrstuhl verbessern wir die Kristalle so, dass wir die Farbumwandlung mit sehr hoher Effizienz und bei großen Lichtleistungen hinbekommen."

Durch Kombination mit anderen Verfahren können die Bonner Physiker so genau die gewünschte Lichtfarbe erzeugen - wichtig unter anderem für die Entwicklung extrem brillanter und scharfer Bildschirme. Denn mit einem roten, einem grünen und einem blauen Laser lassen sich prinzipiell alle Farben herstellen, die unser Auge sehen kann. "Ein normales TV-Gerät bekommt das nicht hin; das schafft nur 50 Prozent aller Farben", betont der Physiker. "Neben einem Laserdisplay wirken herkömmliche Bildschirme einfach flau." Die großen Elektronikfirmen arbeiten daher momentan an Fernsehgeräten auf Laser-Basis. "Inzwischen steht die Technologie auch dank unserer Erkenntnisse kurz vor dem Durchbruch", versichert Buse. "Spätestens in zwei Jahren werden die ersten Laserfernseher auf den Markt kommen."

Zu Ehren von Heinrich Hertz planen die Bonner Physiker im Herbst eine Veranstaltung mit zwei großen öffentlichen Experimentalvorlesungen. Darin werden von Professor Dr. Karl-Heinz Althoff zahlreiche Originalexperimente gezeigt. Professor Dr. Karsten Buse wird zudem präsentieren, was die Erkenntnisse dieses Pioniers der elektromagnetischen Wellenlehre für die Forschung heute bedeuten.

Kontakt:
Prof. Dr. Karsten Buse
Physikalisches Institut der Universität Bonn
Telefon: 0228/73-4899
E-Mail: kbuse@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Laserfernseher Laserlicht Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops