Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurz vorm Schmelzen

09.02.2007
Mit Röntgenstrahlen hat ein internationales Team von Wissenschaftlern, darunter auch zwei Forscher vom Max-Planck-Institut für Quantenoptik (Garching), erstmals die Veränderungen verfolgen können, die ein Festkörper kurz vorm Schmelzen durchläuft. (Science , 2. Februar 2007)

Die Messungen an einem relativ einfachen System - einem dünnen Film aus dem Halbmetall Wismut - fanden am Stanford Linear Accelerator Center (SLAC) (Stanford, USA) statt.

Die Messung demonstriert das hohe Potential der so genannten Anrege-Abfrage-Technik bei der zeitlichen Auflösung ultraschneller Vorgänge. Bei diesem Verfahren wird zunächst mit einem ultrakurzen Lichtpuls ein atomarer Prozess in dem Material in Gang gesetzt. Die sich daraus ergebenden Veränderungen werden mit Hilfe weiterer Lichtpulse ermittelt, die im Abstand von fest definierten Zeitverzögerungen auf das Objekt treffen.

In vorliegenden Experiment wurde ein 50 Nanometer dicker Film des Halbmetalls Wismut mit 70 Femtosekunden (1 Femtosekunde = 10-15 Sekunden) langen Lichtpulsen aus einem Titan-Saphir-Laser (Nahes Infrarot) in einen hochangeregten Zustand gebracht. Da die Laserenergie nicht ausreicht, um den Stoff zum Schmelzen zu bringen, kehren die Atome in weniger als einer Nanosekunde (ein Milliardstel einer Sekunde) in ihren Normalzustand zurück. Wie sich die Festkörperstruktur im Anschluss an die Anregung verändert, untersuchten die Forscher um David Fritz (SLAC), indem sie den Film mit Pulsen aus der (mittlerweile abgebauten) Sub-Picosecond Pulse Source (SPPS) am SLAC bombardierten.

Um die Vorgänge genau zeitlich rekonstruieren zu können, müssen die Wissenschaftler genau wissen, wann die anregenden Lichtpulse bzw. die Röntgenpulse auf das Material treffen. Das Problem dabei ist, dass zwar die Pulse des Infrarot-Lasers in genau und verlässlich definierten Zeitintervallen kommen, sich die Pulse der Röntgenstrahlen aus einem Linear-Beschleuniger aber nicht so gut steuern lassen. Mit Hilfe eines elektrooptischen Kristalls schafften es die beiden MPQ-Forscher, Dr. Reinhard Kienberger und Dr. Adrian Cavalieri, eine Art Stoppuhr zu entwickeln, mit der die relativen Ankunftszeiten der Pulse mit der erforderlichen Genauigkeit bestimmt werden konnten.

... mehr zu:
»Atom »Lichtpuls »SLAC

Sogleich beim Auftreffen des anregenden Laserpulses werden die Bindungen zwischen den Atomen im Festkörper schwächer. Der Atomkern gerät dadurch aus dem Gleichgewicht, so wie eine Murmel, die vom Boden einer Vertiefung auf die geneigten Wände angehoben wird. Losgelassen (also im Anschluss an den Laserpuls) rollt der Kern wieder in die Mitte der Vertiefung zurück, und bevor er sich dort - im Gleichgewichtszustand - niederlässt, vollführt er kleinste Schwingungen um den Tiefpunkt. Mit Hilfe der oben skizzierten Anrege-Abfrage-Technik bestimmten die Forscher die Frequenz dieser Schwingungen. Daraus konnten sie die Kräfte ermitteln, die die Atome zusammenhalten, und zwar in Abhängigkeit von der seit der Anregung verstrichenen Zeit.

Damit lässt sich erstmal eine zeitabhängige "Karte" der Potentialfläche des Festkörpers (aus der die inneratomaren Kräfte hervorgehen) rekonstruieren. Die Ergebnisse, die an diesem aus der Balance geratenen Wismut-Film gewonnen wurden, lassen sich überraschenderweise - mit nur geringfügigen Abänderungen - mit einem theoretische Modell erklären, das gewöhnlich Potentialflächen von Systemen im Gleichgewichtszustand beschreibt.

Die SPPS diente gleichsam als Testfeld für den neuen Freien-Elektronen-Laser (FEL), den Linac Coherent Light Source (LCLS), der jetzt am SLAC konstruiert wird. Mit dieser weit leistungsstärkeren Quelle wird man komplexere Systeme als Wismut, die unter Umständen eine Schlüsselrolle in anderen Gebieten wie der Medizin oder erneuerbaren Energien spielen, in ähnlicher Weise untersuchen können. Das Experiment stellt somit einen Meilenstein dar auf dem Weg, zukünftige FEL effizient als Werkzeuge zu benutzen. Forscher am MPQ und am SLAC sind an diesem Gebiet der Physik in gleicher Weise hochinteressiert.

[Heather Rock Woods, SLAC, Olivia Meyer-Streng, MPQ]

Kontact:
Dr. Reinhard Kienberger
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: 49 - 89 / 32905 731
Fax: +49 - 89 / 32905 200
E-Mail: reinhard.kienberger@mpq.mpg.de
Dr. Adrian Cavalieri
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 601
Fax: +49 - 89 / 32905 200
E-Mail: adrian.cavalieri@mpq.mpg.de
Max-Planck-Institut für Quantenoptik, Presse- und Öffentlichkeitsarbeit:
Dr. Olivia Meyer-Streng
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Atom Lichtpuls SLAC

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz