Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Münster und die Mars-Mission: Planetologen der WWU Münster entwickeln Mars-Spektrometer

17.01.2007
Gibt es oder gab es Leben auf dem Mars? Das ist die zentrale Frage der für das Jahr 2013 von der Europäischen Weltraumagentur ESA geplanten Mars-Mission "ExoMars", der mit Hilfe eines Landefahrzeugs mit unterschiedlichen Messgeräten nach gegangen werden soll.

Das Institut für Planetologie der Universität Münster unter Leitung von Prof. Dr. Elmar K. Jessberger ist an einem Experiment beteiligt, mit dem das für die Suche nach Leben auf dem Mars wichtige geochemische Umfeld analysiert werden kann. Ein neu entwickeltes und für den schwierigen Einsatz auf dem "roten Planeten" geeignetes optisches Spektrometer wurde am Dienstag, 16. Januar 2007, in Münster vorgestellt.

Prof. Jessberger hatte das Experiment zur Analyse der stofflichen und mineralogischen Zusammensetzung des Bodens und der Gesteine des Mars zusammen mit einer internationalen Wissenschaftlergruppe der ESA bereits 2003 vorgeschlagen. In einem ersten Schritt wurde gemeinsam mit der Schwetzinger Firma von Hoerner & Sulger und dem Institute for Analytical Sciences (ISAS) in Berlin zunächst das notwendige Spektrometer entwickelt und gebaut, das für den Einsatz im Weltraum nicht nur extrem leistungsfähig, sondern auch äußerst kompakt, leicht und stabil sein muss. Im Endzustand wird das Spektrometer für den Mars-Einsatz die Größe einer Cola-Dose haben.

Für Prof. Jessberger ist das für den Laien eher unscheinbare Gerät vom Prinzip und Aufbau her "eigentlich ganz einfach": Ein Laserpuls wird auf die zu analysierende Probe, im Ernstfall ein kleines Stück Marsgestein gerichtet, und verdampft eine winzige Menge des Gesteins. Wenn die Energie des Laserpulses ausreichend hoch ist, wird ein Plasma erzeugt, eine Wolke aus Ionen und Elektronen. Die geladenen Teilchen vereinigen sich dann wieder und erzeugen dabei Licht. Die Wellenlängen dieses Lichts sind elementspezifisch und ihre Intensität ist proportional zu den Konzentrationen. Prof. Jessberger: "Wir erhalten so die chemische Zusammensetzung des gelaserten Mars-Gesteins".

... mehr zu:
»Mars-Mission »Spektrometer »WWU

Um die charakteristischen Emissionslinien der chemischen Elemente, aus denen die unbekannten Proben bestehen, ausreichend trennen zu können, muss ein Spektrum mit einer Gesamtlänge von über 30 Zentimetern erzeugt werden. Auf dem Mars-Landesfahrzeug wird aber für das ganze Spektrometer nur ein sehr begrenzter Raum von etwa 17 Zentimetern zur Verfügung stehen. Die Wissenschaftler und Techniker des ISAS in Berlin haben dies auf den ersten Blick unlösbare Problem mit der Entwicklung eines Miniatur-Spektrometers gelöst. Dieser neuartige Typ teilt das Gesamtspektrum, das sich vom Ultraviolett bis zum Infrarot erstreckt, in etwa 70 kurze Teilspektren auf, die nebeneinander auf einem quadratischen Chip von nur 8 Millimeter Kantenlänge abgebildet werden können.

Im Institut für Planetologie der WWU Münster werden neben der Leitung der technischen Entwicklung einzelner Komponenten des Experiments durch Prof. Jessberger und seine Mitarbeiterin Diplom-Geophysikerin Isabelle Rauschenbach wesentliche wissenschaftliche Beiträge zu seiner Anwendung unter Mars-Bedingungen geleistet.

| Universitaet Muenster
Weitere Informationen:
http://www.uni-muenster.de/Planetologie/en/index.html

Weitere Berichte zu: Mars-Mission Spektrometer WWU

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie