Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzig kleine Antennen für Licht

17.01.2007
Das klassische Mikroskop war in Forschung und Lehre schon immer unverzichtbar.

Nach wie vor ist es für Wissenschaftler interessant, mit Hilfe der Lichtmikroskopie tiefer und tiefer in die Welt der kleinsten Strukturen einzudringen. Ein Spezialist auf diesem Gebiet ist Professor Bert Hecht von der Uni Würzburg.

Der Physiker erklärt, was an seiner Arbeit besonders spannend ist: "Mit der Lichtmikroskopie kann man auch Materialanalysen betreiben." Möglich wird das durch die Technik der Spektroskopie: Dabei wird das Licht, das vom untersuchten Objekt im Mikroskop abgestrahlt wird, nach Wellenlängen aufgespalten. "Man analysiert die verschiedenen Farben und kann daraus Informationen über die chemische Struktur des Objekts bekommen."

Zu der Materie, die Hecht erforscht, gehören zum Beispiel lebende Zellen. In diesen komplexen Objekten kann er gezielt einzelne Moleküle und deren Wechselwirkungen mit anderen Molekülen sichtbar machen. Es entstehen dabei keine Bilder, wie man sie von der gewöhnlichen Mikroskopie her kennt. Stattdessen sind nur wenige leuchtende Punkte zu sehen, die ihre Position im Verlauf der Zeit ändern. Auf diese Weise lässt sich der Weg verfolgen, den Moleküle in der Zelle zurücklegen.

... mehr zu:
»Molekül »Spektroskopie

Analysiert man zwei unterschiedliche Molekültypen zugleich und stellt fest, dass beide längere Zeit an einem Punkt verharren, dann findet zwischen ihnen eine Wechselwirkung statt. Solche molekularen Wechselwirkungen bestimmen die Lebensprozesse in einer Zelle. Auf diese Weise hat der Würzburger Physiker zum Beispiel untersucht, wie Viren in den Kern ihrer Wirtszellen eindringen. Erforscht hat er aber auch die Orte, an denen Adrenalin und andere Hormone wirksam werden, nämlich an G-Proteine gekoppelte Rezeptoren.

Im Zentrum seiner Arbeit steht auch die Entwicklung neuartiger, hoch empfindlicher Mikroskopiemethoden und Nachweisverfahren. Unter anderem widmet sich Hecht der Erforschung metallischer Nanostrukturen, die als resonante, winzig kleine Antennen für Licht dienen können. "Solche Strukturen sind nicht nur für die Entwicklung von hoch auflösenden optischen Mikroskopen zukunftsweisend", sagt der Professor.

Bert Hecht ist seit 1. Oktober als Nachfolger von Thomas Bayerl am Physikalischen Institut der Uni Würzburg tätig. Geboren wurde er 1968 in Marktdorf am Bodensee. Nach dem Physikstudium an der Universität Konstanz fertigte er seine Dissertation am IBM Forschungslabor in Rüschlikon in der Schweiz an. Als Postdoc ging er an die Eidgenössische Technische Hochschule (ETH) in Zürich, wo er über die Mikroskopie und Spektroskopie einzelner Farbstoffmoleküle forschte. Von dort wechselte er ans Nationale Kompetenzzentrum für Nanowissenschaften der Schweiz an der Universität Basel, wo er als Assistenzprofessor eine Arbeitsgruppe zum Thema Nano-Optik leitete.

Kontakt: Prof. Dr. Bert Hecht, T (0931) 888-5863, E-Mail: hecht@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Molekül Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie