Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionenstrahlen lassen Nano-Drähte wachsen

15.01.2007
Ein menschliches Haar ist 2000 mal dicker als der Draht mit 10 bis 20 Nanometern Durchmesser, wie ihn Physiker im Forschungszentrum Dresden-Rossendorf (FZD) herstellen können. Das Besondere an diesem Nano-Draht: er wächst nicht als "Haarknäuel" auf einer Materialoberfläche, sondern kann direkt mit schnellen geladenen Atomen in ein beliebiges Material implantiert werden.
Die Atome sind dabei gleichzeitig Werkzeug und Stoff, aus dem der Draht wächst.
Nano-Drähte werden für technische Anwendungen der Zukunft in der Nano-Elektronik und Nano-Optik eine wichtige Rolle spielen. Nano-Drähte könnten etwa die immer weiter fortschreitende Miniaturisierung mikroelektronischer Strukturen vorantreiben oder die Datenübertragung mit Licht verbessern.

Nano-Technologien spielen zwar für die Produkte der Mikroelektronik-Industrie bereits eine gewisse Rolle, doch sind heute vornehmlich Nano-Technologien auf chemischer Basis, etwa zur Beschichtung und Versiegelung von Oberflächen, im Einsatz.

Die Physiker im FZD bedienen sich zur Herstellung von Nano-Drähten des Werkzeuges eines fein gebündelten Ionenstrahls, also eines Strahls aus schnellen, elektrisch geladenen Atomen. Dr. Lothar Bischoff erläutert die Vorgehensweise so: "Mit der Technik des fein gebündelten Ionenstrahls haben wir eine Art Nano-Werkzeug zur Verfügung, mit dem es mühelos gelingt, die Materialoberfläche bis in eine Tiefe von 50 Nanometern zu bearbeiten und in dieser Tiefe die Atome zu deponieren, in der sich später der Nano-Draht bildet. Dabei gelingt es uns, den Ausgangspunkt des Drahtes und die Länge exakt zu bestimmen. Die Probe wird dann aufgeheizt und selbstorganisierende Keimbildungs- und Wachstumsprozesse führen zur Bildung des endgültigen Nano-Drahtes."

... mehr zu:
»Atom »FZD »Ionenstrahl »Nano-Draht »Nanometer

So ist es jetzt gelungen, Nano-Drähte mit Durchmessern von 10 bis 20 Nanometern (1 Nanometer = 1 Millionstel Millimeter) und in Längen von bis zu 10 Mikrometern (1 Mikrometer = 1 Tausendstel Millimeter) herzustellen. Der Herstellungsprozess besteht aus 2 Schritten: Zunächst bedampft man die Rückseite einer Silizium-Scheibe mit einem dünnen Kobaltfilm. Anschließend werden mit dem fein gebündelten Ionenstrahl Ionen in die Vorderseite der Silizium-Scheibe implantiert, wo diese gezielt Kristalldefekte erzeugen, die quasi als Keimlinge für das Wachstum der Nano-Drähte fungieren.

Während eines nachfolgenden Temperschrittes entsteht im Ergebnis ein Kobaltdisilizid-Draht im Silizium-Wafer, dem gängigen Ausgangsmaterial zur Produktion von Chips für die Mikroelektronik-Industrie. Dieses Kobaltdisilizid ist ein geeignetes Material für die Silizium-Technologie: es ist dem Silizium in seiner Gitterstruktur sehr ähnlich und weist zudem eine sehr gute Leitfähigkeit auf, so dass der Einsatz von Kobaltdisilizid-Drähten als Elemente von elektronischen Strukturen oder für die "Verdrahtung" zwischen Bauelementen denkbar ist.

Ein weiterer Vorteil der Ionenstrahl-Technik ist, dass in verschiedene Materialoberflächen Nano-Drähte aus unterschiedlichen Ionen-Sorten - wie Gold oder Platin - implantiert werden können. Hierfür ist langjähriges Know-How für den Einsatz von fein fokussierten Ionenstrahlen (im Fachjargon "Focussed Ion Beam", abgekürzt FIB) notwendig, das im FZD vorliegt. Die Forschungsergebnisse wurden jüngst in der Zeitschrift "Applied Physics Letters" veröffentlicht.

Veröffentlichung:
C. Akhmadaliev, B. Schmidt, L. Bischoff,
Defect induced formation of CoSi2 nanowires by focused ion beam synthesis,
Applied Physics Letters, Vol. 89, Art. No 223129 (2006).
Weitere Informationen:
Dr. Lothar Bischoff
Forschungszentrum Dresden-Rossendorf
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 2866
l.bischoff@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Information:
Das FZD erbringt wesentliche Beiträge der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zu folgenden Fragestellungen:

o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?

o Wie können Tumor- und Stoffwechselerkrankungen frühzeitig erkannt und wirksam behandelt werden?

o Wie schützt man Mensch und Umwelt vor technischen Risiken?

Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZD ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: Atom FZD Ionenstrahl Nano-Draht Nanometer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Silizium als neues Speichermaterial für die Akkus der Zukunft

25.04.2018 | HANNOVER MESSE

IAB-Arbeitsmarktbarometer: Trotz Dämpfer auf gutem Niveau

25.04.2018 | Wirtschaft Finanzen

AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis

25.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics