Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Lichtschalter erleichtert Datenübertragung

20.12.2006
Wissenschaftler des Paul-Drude-Instituts für Festkörperelektronik (PDI) haben ein neuartiges Schaltelement entwickelt, mit dem Lichtsignale gesteuert werden können. Das Bauteil ist kleiner als ein menschliches Haar.

Wissenschaftler des Berliner Paul-Drude-Instituts für Festkörperelektronik (PDI) haben ein optisches Schaltelement entwickelt, das auf einem neuen Steuerungskonzept beruht und dreihundertmal kleiner als vergleichbare Bauteile ist. Solche optischen Schaltelemente sind wichtig für die Datenübertragung per Licht. Je kleiner und leistungsfähiger sie sind, desto mehr Daten können umso schneller transportiert werden. Das neuartige Bauteil ist ein so genanntes akustisches Mach-Zehnder-Interferometer (MZI), das Lichtsignale moduliert. Die Wissenschaftler um Dr. Paulo Santos vom PDI berichten darüber in der Fachzeitschrift Applied Physics Letters (Nr. 89, 121104).


Schematische Darstellung des neuen Schaltelements. Es misst nur 15 mal 15 Mikrometer. Zum Vergleich: Der Durchmesser eines Haars liegt bei 60 Mikrometern. Abb.: PDI

Der Modulator ist unvorstellbar winzig. Würde man ein Haar durchschneiden, so passten auf die Schnittfläche sechzehn der Bauteile. Der aktive Bereich, in dem die Modulation stattfindet, ist nur je 15 Mikrometer lang und breit. Doch es sind nicht allein die Abmessungen, die das Bauteil so besonders machen, sondern auch das Material und die Funktionsweise. Bisherige Mach-Zehnder-Interferometer (MZI) werden hauptsächlich aus dielektrischem Material hergestellt, beispielsweise Lithiumniobat, und reagieren auf angelegte elektrische Spannungen. Die Neuentwicklung aus dem PDI dagegen wurde aus der Halbleiterverbindung Galliumarsenid (GaAs) hergestellt und benutzt so genannte akustische Oberflächenwellen, um das durch eine optische Faser eingebrachte Licht zu modulieren. Beide Neuerungen führen sowohl zur Steigerung der Effizienz als auch zur Erhöhung der Dichte von Bauelementen, die man auf einem Chip herstellen kann.

Den Hintergrund erklärt Dr. Paulo Santos, Arbeitsgruppenleiter am PDI: "Das Prinzip von Mach-Zehnder-Interferometern beruht auf Interferenz, also der Überlagerung von Lichtwellen", sagt der Physiker. Ein MZI teilt einen eingehenden Lichtstrahl, lenkt ihn in zwei Arme und führt den Strahl nach kurzer Distanz wieder zusammen. In bisherigen GaAs-Prototypen, die in wenigen Jahren auf den Markt kommen sollen, sind diese Arme einige Millimeter lang. Legt man nun eine elektrische Spannung an das Bauteil, so wird der optische Brechungsindex beeinflusst, das heißt, die Lichtgeschwindigkeit in einem der Arme ändert sich. Trifft bei der Zusammenführung der beiden Teilstrahlen (Lichtwellen) ein Wellenberg mit einem Wellental zusammen, so kommt es zur Auslöschung. "Das Problem dabei ist, dass die Effizienz gering ist", sagt Santos, "denn die dielektrischen Materialien reagieren nur schwach auf die angelegte Spannung."

... mehr zu:
»MZI »PDI

Auch bei einer Halbleiterverbindung wie Galliumarsenid bliebe das Problem, wollte man allein mit elektrischer Spannung steuern. Die Wissenschaftler am PDI umgehen die Schwierigkeit, indem sie in das Bauteil eine Art Mini-Schallquelle einbauen, die elektrische Signale in akustische Oberflächenwellen umwandelt. Diese Schallwellen breiten sich auf dem Bauteil aus und beeinflussen den Brechungsindex. Durch eine geschickte Anordnung gelingt es, mit wenig akustischer Energie die Lichtgeschwindigkeit zu verändern.

Der Clou: Anders als etwa Lithiumniobat eignet sich Galliumarsenid hervorragend dazu, selbst Licht zu erzeugen; Halbleiter-Laserdioden sind Routine. Das MZI nach dem Prinzip des PDI könnte also auf einer winzigen Fläche Lichtquelle und Modulator vereinen und aus einem Stück gefertigt werden (monolithisch). Auf einen Chip von Daumennagelgröße würden mehrere Tausend Modulatoren passen. Die monolithische Bauweise von Lichtquelle und Modulator, die geringe Größe und der kleinere Energieverbrauch könnten Herstellungskosten senken und die Datenübertragungsraten in Netzwerken und auch in Rechnern selbst steigern: Rasantere Internetverbindungen und schnellere Rechner wären möglich.

Bevor es soweit ist, müssen noch einige technische Herausforderungen gemeistert werden, beispielsweise die Entwicklung effizienterer Prozesse zur Erzeugung von Oberflächenwellen. Auch die Übertragung des Konzeptes auf weitere Materialien wäre wünschenswert. Hierfür laufen Kooperationen mit anderen Forschergruppen, beispielsweise in den Niederlanden und in Dänemark. Zum einen wird Indiumphosphid verwendet, um das Prinzip mit Lichtquellen für den Wellenlängenbereich der Telekommunikation (um 1,5 Mikrometer) zu kombinieren. Dafür ist Galliumarsenid (um 0,9 Mikrometer) nicht geeignet. Zum anderen verspricht Silizium neue Möglichkeiten durch die Kombination optischer Elemente mit der hoch entwickelten und preiswert zu fertigenden Mikroelektronik.

Quellenhinweis: M. M. de Lima et al.: Compact Mach-Zehnder acousto-optic modulator. In: Applied Physics Letters 89, 121104 (2006).

Bei Rückfragen:

Dr. Paulo Santos, PDI: 030 / 2 03 77-221
santos@pdi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: MZI PDI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise