Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues magnetisches Kühlverfahren für Gase: Eiskalte Atomwolken

29.11.2006
Kühlt man Materie nahe an den absoluten Nullpunkt, so tritt deren Quantennatur zu Tage. Manche Atome, so genannte Bosonen, gehen dann in einen neuen Aggregatzustand über, sie formen ein Bose-Einstein-Kondensat.

Experimente mit solchen Bose-Einstein-Kondensaten gewähren einen Einblick in die Quantenwelt und sind daher ideale Forschungsobjekte für die Grundlagenforschung. Um zu solchen ultrakalten Temperaturen zu gelangen, waren Physiker bisher auf die verlustreiche Verdampfungskühlung angewiesen: Wie bei erkaltendem Kaffee verlassen dabei die heißesten Atome die Wolke, wodurch der Rest zwar kälter, aber auch weniger wird.

Am 5. Physikalischen Institut der Universität Stuttgart wurde nun ein bereits in den 50er-Jahren vorgeschlagenes Kühlschema erstmals experimentell realisiert, bei dem es zu keinem Atomverlust kommt und das somit wesentlich effizienter arbeitet. Die Forschungsarbeiten, über die auch die renommierte Wissenschaftszeitschrift nature physics in ihrer jüngsten Ausgabe berichtete*, sind Teil des transregionalen Sonderforschungsbereichs SFB/TR 21, in dem die Universität Stuttgart Sprecherhochschule ist.

Temperatur ist ein Maß für Bewegungsenergie. Heiß bedeutet eine Zitterbewegung mit großer Amplitude, kalt eine mit kleiner. Hat ein System zwei unabhängige Bewegungsarten, so kann die Temperatur für beide Arten unterschiedlich sein. Ein Beispiel hierfür ist die Bewegung kleiner Magnete in einem Magnetfeld, wie sie beispielsweise von Kompassnadeln bekannt sind. Jeder Magnet kann sich einerseits mit seinem Schwerpunkt im Raum bewegen. Andererseits kann die Orientierung der Magnete relativ zur Richtung des Magnetfelds zittern. Beide Freiheitsgrade können eine unterschiedliche Temperatur haben. So können die Magnete zum Beispiel alle parallel ausgerichtet, also in ihrer Orientierung sehr kalt sein und sich trotzdem sehr schnell bewegen und deshalb in ihrer Schwerpunktbewegung heiß sein. Wenn die Magnete aneinander stoßen, kommen die Temperatur der Bewegung mit der Temperatur der Orientierung ins Gleichgewicht. Im Beispiel wird sich die Temperatur der Orientierung erhöhen und die Temperatur der Bewegung reduzieren, bis beide dieselbe Temperatur haben. Kühlt man also die eine Form der thermischen Energie, hier das Orientierungszittern, kann damit auch die andere Form der Energie kühlen.

Entscheidender Trick

Feste Stoffe werden seit über 70 Jahren nach diesem Prinzip gekühlt. Für Gase konnte diese Technik jedoch nicht angewandt werden, da viele Atome nicht magnetisch genug sind. In diesem Jahr gelang es der Gruppe um Prof. Tilman Pfau am 5. Physikalischen Institut der Universität Stuttgart erstmals, dieses Entmagnetisierungskühlverfahren auf atomare Gase anzuwenden. Im Experiment konnten eine Million Chromatome auf eine Temperatur von zehn Mikrokelvin (das sind zehn Millionstel Grad über dem absoluten Nullpunkt) abgekühlt werden. Möglich wurde dies, da die Stuttgarter Physiker mit Chromgas arbeiten, einer besonders magnetischen Atomsorte. Im Jahr 2005 gelang den Stuttgarter Wissenschaftler erstmals die Erzeugung eines Bose-Einstein-Kondensats aus Chrom-Atomen.

Der entscheidende Trick bei diesem Kühlverfahren ist, dass sich die Temperatur der atomaren Magnete durch "optisches Pumpen" mit Laserlicht immer wieder "künstlich" abkühlen lässt. Der Pionier des "optischen Pumpens" - der französische Nobelpreisträger Alfred Kastler - hat darin schon 1950 das Potential zur Kühlung anderer Bewegungsarten erkannt. Nach über 55 Jahren ist seine Idee nun umgesetzt worden.

Weitere Informationen bei Prof. Tilman Pfau, 5. Physikalisches Institut, Tel. 0711/685-68025, t.pfau@physik.uni-stuttgart.de.

*Der Artikel von Marco Fattori, Tobias Koch, Simone Goetz, Axel Griesmaier, Sven Hensler, Jürgen Stuhler und Tilman Pfau ist unter dem Titel "Demagnetization cooling of a gas" abgedruckt in Nature Physics, 2, 2006, S. 765 ff.

Ursula Zitzler | idw
Weitere Informationen:
http://www.nature.com/naturephysics
http://www.pi5.uni-stuttgart.de/news/061115/news141106.html
http://arxiv.org/PS_cache/cond-mat/pdf/0610/0610498.pdf

Weitere Berichte zu: Bose-Einstein-Kondensat Kühlverfahren Magnet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie