Leistungsfähigster Computer Europas berechnet Galaxienentstehung

MareNostrum, der leistungsfähigste Supercomputer Europas steht in einer ehemaligen Kirche in Barcelona. Gerade wurde seine Rechenkapazität verdoppelt. Mit 10.240 Prozessoren und einer Rechnerkapazität von 94,21 Teraflops kann er 94,21 Billionen Operationen in einer Sekunde ausführen.

Damit ist er nicht nur der leistungsfähigste Supercomputer Europas, sondern auch der fünftgrößte der Welt. Im Rahmen europäischer Projekte haben Wissenschaftler vom Astrophysikalischen Institut Potsdam (AIP) Rechenzeit auf MareNostrum eingeworben, um sehr komplexe Probleme der Galaxienentstehung zu studieren, deren Berechnung auf normalen Computern Jahrhunderte dauern würden.

Wissenschaftlicher Fortschritt ist in der Forschung auf einigen Gebieten nur durch eine enge Zusammenarbeit zwischen einer wissenschaftlich-theoretischen Basis, Experimenten und Computer-Simulationen möglich. Genügend Rechenkapazität ist der Schlüssel für die wissenschaftliche und technologische Entwicklung eines Landes. Wissenschaftler aus vielen Ländern und vielen Bereichen sind daher an Rechenzeit auf dem spanischen Supercomputer MareNostrum interessiert.

Die Anfragen zur Benutzung von Rechenzeit überschreiten MareNostrum's Kapazität um ein dreifaches. Darum müssen sich Wissenschaftler bei einem Zugangskomitee aus unabhängigen spanischen Wissenschaftlern bewerben. Der Computer wird von Forschungsprojekten aus Bereichen wie Erdwissenschaften, Biomedizin, Chemie, Materialwissenschaften, Physik, Ingenieurwesen und Astrophysik genutzt. In Zusammenarbeit mit der Autonomen Universität Madrid (UAM) führt das Astrophysikalische Institut Potsdam (AIP) zwei Simulationen auf MareNostrum aus, um die Entwicklung von Galaxien im frühen Universum nachvollziehen zu können. Die Simulationen sind riesig und sehr komplex und sind daher nur auf solchen Supercomputern möglich. So wird derzeit die Entwicklung von tausenden Galaxien in einem Würfel von 233,2 Millionen Lichtjahren Kantenlänge simuliert.

Bisher standen diesem Projekt schon über eine Million Rechenstunden auf MareNostrum zur Verfügung. Zum Vergleich: ein normaler Computer mit einem Prozessor müsste dafür über 114 Jahre ununterbrochen rechnen. Auf MareNostrum hat das nur 52 Tage gedauert, weil für die Simulation 800 Prozessoren gleichzeitig benutzt wurden. Nach der Verdopplung der Rechenkapazität wurden dem Projekt weitere 600.000 Stunden zugesprochen. Projektleiter Prof. Gustavo Yepes hofft damit bis zu einer Rotverschiebung von 5 vorzudringen und so die Entwicklung von Galaxien in der ersten Milliarde Jahre nach dem Urknall zu sehen.

Für das zweite Simulationsprojekt des AIP im Rahmen der europäischen DEISA Extreme Computing Initiative werden gerade noch die Vorbereitungen getroffen. In Zusammenarbeit mit Prof. Yehuda Hoffman (Jerusalem), der im Sommer auf einer Mercator-Professur der Universität Potsdam am AIP geforscht hat, und Prof. Anatoly Klypin, der im Sommer das Helmholtz-Institut am AIP leitete, plant Dr. Stefan Gottlöber vom AIP, die Entwicklung des lokalen Universums zu simulieren, d.h., im Computer sollen ähnliche Objekte entstehen, wie wir sie in unserer Umgebung beobachten. Umgebung, das sind einige Millionen Lichtjahre. Dafür stehen zunächst einmal 700.000 Computerrechenstunden (umgerechnet wären das 80 Jahre) zur Verfügung.

Media Contact

Shehan Bonatz idw

Weitere Informationen:

http://www.aip.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer