Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leistungsfähigster Computer Europas berechnet Galaxienentstehung

28.11.2006
Astrophysiker des AIP beteiligt

MareNostrum, der leistungsfähigste Supercomputer Europas steht in einer ehemaligen Kirche in Barcelona. Gerade wurde seine Rechenkapazität verdoppelt. Mit 10.240 Prozessoren und einer Rechnerkapazität von 94,21 Teraflops kann er 94,21 Billionen Operationen in einer Sekunde ausführen.

Damit ist er nicht nur der leistungsfähigste Supercomputer Europas, sondern auch der fünftgrößte der Welt. Im Rahmen europäischer Projekte haben Wissenschaftler vom Astrophysikalischen Institut Potsdam (AIP) Rechenzeit auf MareNostrum eingeworben, um sehr komplexe Probleme der Galaxienentstehung zu studieren, deren Berechnung auf normalen Computern Jahrhunderte dauern würden.

Wissenschaftlicher Fortschritt ist in der Forschung auf einigen Gebieten nur durch eine enge Zusammenarbeit zwischen einer wissenschaftlich-theoretischen Basis, Experimenten und Computer-Simulationen möglich. Genügend Rechenkapazität ist der Schlüssel für die wissenschaftliche und technologische Entwicklung eines Landes. Wissenschaftler aus vielen Ländern und vielen Bereichen sind daher an Rechenzeit auf dem spanischen Supercomputer MareNostrum interessiert.

Die Anfragen zur Benutzung von Rechenzeit überschreiten MareNostrum's Kapazität um ein dreifaches. Darum müssen sich Wissenschaftler bei einem Zugangskomitee aus unabhängigen spanischen Wissenschaftlern bewerben. Der Computer wird von Forschungsprojekten aus Bereichen wie Erdwissenschaften, Biomedizin, Chemie, Materialwissenschaften, Physik, Ingenieurwesen und Astrophysik genutzt. In Zusammenarbeit mit der Autonomen Universität Madrid (UAM) führt das Astrophysikalische Institut Potsdam (AIP) zwei Simulationen auf MareNostrum aus, um die Entwicklung von Galaxien im frühen Universum nachvollziehen zu können. Die Simulationen sind riesig und sehr komplex und sind daher nur auf solchen Supercomputern möglich. So wird derzeit die Entwicklung von tausenden Galaxien in einem Würfel von 233,2 Millionen Lichtjahren Kantenlänge simuliert.

Bisher standen diesem Projekt schon über eine Million Rechenstunden auf MareNostrum zur Verfügung. Zum Vergleich: ein normaler Computer mit einem Prozessor müsste dafür über 114 Jahre ununterbrochen rechnen. Auf MareNostrum hat das nur 52 Tage gedauert, weil für die Simulation 800 Prozessoren gleichzeitig benutzt wurden. Nach der Verdopplung der Rechenkapazität wurden dem Projekt weitere 600.000 Stunden zugesprochen. Projektleiter Prof. Gustavo Yepes hofft damit bis zu einer Rotverschiebung von 5 vorzudringen und so die Entwicklung von Galaxien in der ersten Milliarde Jahre nach dem Urknall zu sehen.

Für das zweite Simulationsprojekt des AIP im Rahmen der europäischen DEISA Extreme Computing Initiative werden gerade noch die Vorbereitungen getroffen. In Zusammenarbeit mit Prof. Yehuda Hoffman (Jerusalem), der im Sommer auf einer Mercator-Professur der Universität Potsdam am AIP geforscht hat, und Prof. Anatoly Klypin, der im Sommer das Helmholtz-Institut am AIP leitete, plant Dr. Stefan Gottlöber vom AIP, die Entwicklung des lokalen Universums zu simulieren, d.h., im Computer sollen ähnliche Objekte entstehen, wie wir sie in unserer Umgebung beobachten. Umgebung, das sind einige Millionen Lichtjahre. Dafür stehen zunächst einmal 700.000 Computerrechenstunden (umgerechnet wären das 80 Jahre) zur Verfügung.

Shehan Bonatz | idw
Weitere Informationen:
http://www.aip.de

Weitere Berichte zu: AIP Galaxienentstehung MareNostrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie