Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Some like it cold - DNA bewegt sich im Temperaturunterschied

28.11.2006
Moleküle bewegen sich entlang einem Wärmefluss - typischerweise vom Warmen ins Kalte. Die theoretische Erklärung für diese so genannte Thermophorese von Molekülen in Flüssigkeiten war lange umstritten. Stefan Duhr und Emmy-Noether-Nachwuchsgruppenleiter Dr. Dieter Braun am Lehrstuhl für Angewandte Physik der Ludwig-Maximilians-Universität (LMU) München haben nun die Bewegung des Erbmoleküls DNA von warm nach kalt untersucht.

Wie in den "Proceedings of the National Academy of Sciences (PNAS)" beschrieben, konnten sie so eine eine einheitliche mikroskopische Theorie zur Erklärung des Phänomens entwickeln. Deren Grundlage ist die Oberflächenenergie zwischen Molekül und Lösungsmittel - eine Schicht von nur wenigen Nanometern Dicke. "Dank unserer neuen Theorie kann nun die Geschwindigkeit von Molekülen in einem Temperaturgradienten vorhergesagt werden", so Braun. "Dies erlaubt umgekehrt auch, aus diesem Drift wichtige Eigenschaften der Moleküle, etwa ihre Ladung, zu bestimmen."

Die Auswirkungen der Thermodiffussion konnten Duhr und Braun in einem Versuch eindrucksvoll demonstrieren. Mit Hilfe eines Lasers erhitzten sie mikroskopisch kleine Bereiche, die die Buchstaben "DNA" ergaben in einem dünnen Wasserfilm um zwei Grad Celsius. Echte DNA-Moleküle in der Flüssigkeit bewegten sich dann von den warmen Buchstaben weg und ließen im Fluoreszenzbild die Buchstaben "DNA" dunkel aufscheinen. Für ihre Untersuchungen entwickelten die Forscher eigens eine Abbildungs- und Darstellungsmethode, die Fluoreszenz nutzt, um die Thermophorese von Molekülen ganz unterschiedlicher Größen zu messen. Auch stark verdünnte Suspensionen können damit untersucht werden. So konnten die Wissenschaftler den Effekt verschiedener Salzkonzentrationen auf DNA-Moleküle und - im Vergleich - auf verschieden große Plastikkügelchen analysieren.

Seit längerem schon beschäftigen sich verschiedene Forschergruppen mit der Suche nach den Grundlagen der Thermophorese. Dem liegt nicht nur theoretisches Interesse zugrunde. So ist der elektrische "Bruder" der Thermophorese, die Elektrophorese, eine etablierte Standardmethode um biologische Moleküle aufzutrennen. Die Forscher versuchen nun, die Thermophorese zu nutzen, um biologische Nachweismethoden schneller und genauer zu machen. Dazu werden sie die Temperaturgradienten mittels optischer oder elektrischer Nanotechnologie weiter verkleinern. "Dies hat den Vorteil, dass die Messung von Thermophorese in deutlich weniger als einer Sekunde möglich wird", berichtet Braun. "Davon erhoffen wir uns neue optische oder elektrische Nachweismethoden, um mit hoher Geschwindigkeit biologische Moleküle analysieren zu können."

Ansprechpartner:
Dr. Dieter Braun
Department für Physik der LMU
Tel.: 089-2180-2317
Fax: 089-2180-2050
E-Mail: dieter.braun@physik.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: DNA Molekül Temperaturgradienten Thermophorese

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gewaltige, lange zurückliegende Galaxienverschmelzungen
26.04.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics