Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetnadeln schlagen Saltos

23.11.2006
Stuttgarter Max-Planck-Forscher entdecken neue Möglichkeiten für Magnetspeicher

Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart haben einen neuen Mechanismus entdeckt, mit dem man kleinste magnetische Strukturen - sogenannte Vortex-Kerne - mit schwachen Magnetfeldern schnell und verlustfrei umschalten kann. Bislang brauchte man dazu sehr starke Magnetfelder, was einen großen technischen Aufwand bedeutet. Die neue Methode eröffnet möglicherweise neue Möglichkeiten in der magnetischen Datenspeicherung (Nature, 23. November 2006).


Abb. 1: Dynamisches Schalten des Vortex-Kerns: Im oberen Teil sind die "Magnetnadeln" des Vortex-Kerns schematisch wiedergegeben, links mit Orientierung nach unten, rechts nach oben. Der untere Teil zeigt diese beiden Magnetisierungsrichtungen des Vortex-Kerns in zwei Bildern, aufgenommen mit einem magnetischen Raster-Röntgenmikroskop an der Advanced Light Source in Berkeley, Kalifornien, USA. In der Mitte ist der bipolare Magnetfeldpuls dargestellt (250 MHz, in der Spitze 1,5 Milli-Tesla), der das Umschalten des Vortex-Kerns bewirkt. Bild: Max-Planck-Institut für Metallforschung


Abb. 2: Mikromagnetische Simulation des Schaltens des Vortex-Kerns durch einen kurzen Magnetpuls: (a) Ausgangszustand: Vortex-Kern nach unten; (b) zuerst ist eine zusätzliche Magnetisierung nach oben sichtbar; (c) daraus formiert sich eine Doppelspitze: Ein Vortex-Antivortex-Paar; (d) Endzustand: Nach Auslöschung des ursprünglichen Vortex durch den Antivortex bleibt ein Vortex-Kern nach oben übrig. Bild: Max-Planck-Institut für Metallforschung

Kleinste Magnetstrukturen, die wenige Millionstel Millimetern messen, stoßen seit etwa zehn Jahren auf ein wachsendes Interesse in Wissenschaft und Technik - vor allem wegen möglicher Anwendungen in Magnetspeichern. In solchen Strukturen tritt ein faszinierendes quantenmechanisches Phänomen auf: Der Vortex-Kern, der schon seit 40 Jahren theoretisch vorhergesagt wurde, aber erst vor vier Jahren im Experiment nachgewiesen werden konnte. In kleinen magnetischen Plättchen schließen sich die magnetisierten Bereiche oft zu ebenen geschlossenen Magnetkreisen zusammen, die man Vortices nennt (Singular: Vortex). Stellt man sich vor, man würde mit einem atomgroßen Kompass in einem Vortex spazieren gehen, dann würde die Kompassnadel immer in die Ebene zeigen - es sei denn, man nähert sich der Mitte des Vortex, seinem Kern: Dort erheben sich die atomaren magnetischen Kompassnadeln aus der Oberfläche und es entsteht auf kleinstem Raum (auf einem Radius von etwa 20 Atomen) das größte im Material mögliche Magnetfeld.

Die Magnetnadel kann im Vortex-Kern entweder nach oben oder nach unten zeigen (Abbildung 1). Will man diese Orientierung zur magnetischen Datenspeicherung nutzen, hat man aber mit der für Vortexstrukturen typischen enormen Stabilität zu kämpfen: Bisher brauchte man sehr hohe externe Magnetfelder von etwa einem halben Tesla, um die Orientierung des Vortex-Kerns umzudrehen. Das ist etwa ein Drittel des Feldes, das der stärkste Dauermagnet liefern kann.

... mehr zu:
»Magnetfeld »Vortex »Vortex-Kern

Forscher am Max-Planck-Institut für Metallforschung fanden nun eine elegante Lösung, Vortex-Kerne viel einfacher umzuschalten. Mit Hilfe der zeitaufgelösten magnetischen Raster-Röntgenmikroskopie, die durch die Gruppe von Hermann Stoll, Abteilung Schütz, am Institut entwickelt wurde, entdeckten sie einen bislang unbekannten Mechanismus: Das dynamische Schalten des Vortex-Kerns. Durch einem kurzen Magnetpuls (siehe Abbildung 1) wird zunächst ein Magnetfeld senkrecht zum Vortex aufgebaut; damit wird die ganze Struktur zu einer kollektiven Bewegung der Spins angeregt. So bildet sich, wie mikromagnetische Simulationen (Abbildung 2) zeigen, am Rand des ursprünglichen Vortex - fast ohne Energieaufwand - eine Magnetisierung in entgegengesetzter Richtung. Daraus entsteht ein Vortex-Antivortex-Paar. Der Antivortex löscht den ursprünglichen Vortex aus und am Ende bleibt nur ein Vortex mit entgegen gesetzter Polarisation übrig.

So gelang es den Max-Planck-Wissenschaftlern zusammen mit Forschern der Universität Gent, der Advanced Light Source in Berkeley, Kalifornien, des Forschungszentrums Jülich und den Universitäten Regensburg und Bielefeld, den Vortex-Kern mit rund 300 mal schwächeren, aber sehr kurzen magnetischen Pulsen effektiv und gezielt zu schalten.

Möglicherweise kann dieser erstmals beobachtete Schaltmechanismus für ein völlig neues magnetisches Speicherkonzept genutzt werden. Die Richtungen der kleinen, nanoskopischen magnetischen Nadeln definieren hierbei ein digitales Bit, das extrem stabil ist gegen oft unvermeidbare äußere Einflüsse wie Aufheizung oder störende Magnetfelder. Mit dem neu entdeckten dynamischen Effekt lässt sich der Vortex-Kern leicht schalten, und zwar fast verlustfrei und vor allem extrem schnell.

Das Projekt wurde unterstützt durch die Max-Planck-Gesellschaft, die Deutsche Forschungsgemeinschaft über das Schwerpunktprogramm "Ultrafast Magnetisation Processes" und die Leitung des Office of Science, Office of Basic Energy Science des US Department of Energy.

Originalveröffentlichung:

B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss , C. H. Back , G. Schütz
Magnetic vortex core reversal by excitation with short bursts of an alternating field

Nature, 23 November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Magnetfeld Vortex Vortex-Kern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics