Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetnadeln schlagen Saltos

23.11.2006
Stuttgarter Max-Planck-Forscher entdecken neue Möglichkeiten für Magnetspeicher

Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart haben einen neuen Mechanismus entdeckt, mit dem man kleinste magnetische Strukturen - sogenannte Vortex-Kerne - mit schwachen Magnetfeldern schnell und verlustfrei umschalten kann. Bislang brauchte man dazu sehr starke Magnetfelder, was einen großen technischen Aufwand bedeutet. Die neue Methode eröffnet möglicherweise neue Möglichkeiten in der magnetischen Datenspeicherung (Nature, 23. November 2006).


Abb. 1: Dynamisches Schalten des Vortex-Kerns: Im oberen Teil sind die "Magnetnadeln" des Vortex-Kerns schematisch wiedergegeben, links mit Orientierung nach unten, rechts nach oben. Der untere Teil zeigt diese beiden Magnetisierungsrichtungen des Vortex-Kerns in zwei Bildern, aufgenommen mit einem magnetischen Raster-Röntgenmikroskop an der Advanced Light Source in Berkeley, Kalifornien, USA. In der Mitte ist der bipolare Magnetfeldpuls dargestellt (250 MHz, in der Spitze 1,5 Milli-Tesla), der das Umschalten des Vortex-Kerns bewirkt. Bild: Max-Planck-Institut für Metallforschung


Abb. 2: Mikromagnetische Simulation des Schaltens des Vortex-Kerns durch einen kurzen Magnetpuls: (a) Ausgangszustand: Vortex-Kern nach unten; (b) zuerst ist eine zusätzliche Magnetisierung nach oben sichtbar; (c) daraus formiert sich eine Doppelspitze: Ein Vortex-Antivortex-Paar; (d) Endzustand: Nach Auslöschung des ursprünglichen Vortex durch den Antivortex bleibt ein Vortex-Kern nach oben übrig. Bild: Max-Planck-Institut für Metallforschung

Kleinste Magnetstrukturen, die wenige Millionstel Millimetern messen, stoßen seit etwa zehn Jahren auf ein wachsendes Interesse in Wissenschaft und Technik - vor allem wegen möglicher Anwendungen in Magnetspeichern. In solchen Strukturen tritt ein faszinierendes quantenmechanisches Phänomen auf: Der Vortex-Kern, der schon seit 40 Jahren theoretisch vorhergesagt wurde, aber erst vor vier Jahren im Experiment nachgewiesen werden konnte. In kleinen magnetischen Plättchen schließen sich die magnetisierten Bereiche oft zu ebenen geschlossenen Magnetkreisen zusammen, die man Vortices nennt (Singular: Vortex). Stellt man sich vor, man würde mit einem atomgroßen Kompass in einem Vortex spazieren gehen, dann würde die Kompassnadel immer in die Ebene zeigen - es sei denn, man nähert sich der Mitte des Vortex, seinem Kern: Dort erheben sich die atomaren magnetischen Kompassnadeln aus der Oberfläche und es entsteht auf kleinstem Raum (auf einem Radius von etwa 20 Atomen) das größte im Material mögliche Magnetfeld.

Die Magnetnadel kann im Vortex-Kern entweder nach oben oder nach unten zeigen (Abbildung 1). Will man diese Orientierung zur magnetischen Datenspeicherung nutzen, hat man aber mit der für Vortexstrukturen typischen enormen Stabilität zu kämpfen: Bisher brauchte man sehr hohe externe Magnetfelder von etwa einem halben Tesla, um die Orientierung des Vortex-Kerns umzudrehen. Das ist etwa ein Drittel des Feldes, das der stärkste Dauermagnet liefern kann.

... mehr zu:
»Magnetfeld »Vortex »Vortex-Kern

Forscher am Max-Planck-Institut für Metallforschung fanden nun eine elegante Lösung, Vortex-Kerne viel einfacher umzuschalten. Mit Hilfe der zeitaufgelösten magnetischen Raster-Röntgenmikroskopie, die durch die Gruppe von Hermann Stoll, Abteilung Schütz, am Institut entwickelt wurde, entdeckten sie einen bislang unbekannten Mechanismus: Das dynamische Schalten des Vortex-Kerns. Durch einem kurzen Magnetpuls (siehe Abbildung 1) wird zunächst ein Magnetfeld senkrecht zum Vortex aufgebaut; damit wird die ganze Struktur zu einer kollektiven Bewegung der Spins angeregt. So bildet sich, wie mikromagnetische Simulationen (Abbildung 2) zeigen, am Rand des ursprünglichen Vortex - fast ohne Energieaufwand - eine Magnetisierung in entgegengesetzter Richtung. Daraus entsteht ein Vortex-Antivortex-Paar. Der Antivortex löscht den ursprünglichen Vortex aus und am Ende bleibt nur ein Vortex mit entgegen gesetzter Polarisation übrig.

So gelang es den Max-Planck-Wissenschaftlern zusammen mit Forschern der Universität Gent, der Advanced Light Source in Berkeley, Kalifornien, des Forschungszentrums Jülich und den Universitäten Regensburg und Bielefeld, den Vortex-Kern mit rund 300 mal schwächeren, aber sehr kurzen magnetischen Pulsen effektiv und gezielt zu schalten.

Möglicherweise kann dieser erstmals beobachtete Schaltmechanismus für ein völlig neues magnetisches Speicherkonzept genutzt werden. Die Richtungen der kleinen, nanoskopischen magnetischen Nadeln definieren hierbei ein digitales Bit, das extrem stabil ist gegen oft unvermeidbare äußere Einflüsse wie Aufheizung oder störende Magnetfelder. Mit dem neu entdeckten dynamischen Effekt lässt sich der Vortex-Kern leicht schalten, und zwar fast verlustfrei und vor allem extrem schnell.

Das Projekt wurde unterstützt durch die Max-Planck-Gesellschaft, die Deutsche Forschungsgemeinschaft über das Schwerpunktprogramm "Ultrafast Magnetisation Processes" und die Leitung des Office of Science, Office of Basic Energy Science des US Department of Energy.

Originalveröffentlichung:

B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss , C. H. Back , G. Schütz
Magnetic vortex core reversal by excitation with short bursts of an alternating field

Nature, 23 November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Magnetfeld Vortex Vortex-Kern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen