Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

KATRIN kommt!

16.11.2006
Hauptspektrometer des KArlsruhe TRItium Neutrino Experiments
wird nach Reise um Europa im Forschungszentrum Karlsruhe angeliefert
Pressekonferenz am 25. November in der Rheinhalle Leopoldshafen
Das riesige Hauptspektrometer des KArlsruher TRItium Neutrino Experimentes KATRIN beendet seine Seereise rund um Europa und geht auf die letzte Etappe zum Forschungszentrum Karlsruhe. Am 25. November wird es an der so genannten "Nato-Rampe" in Eggenstein-Leopoldshafen mit Hilfe des größten mobilen Schwerlastkrans in Europa vom Rheinschiff auf Tieflader verladen und anschließend durch den Ortskern von Leopoldshafen zum Forschungszentrum transportiert.

Am 29. November wird das Spektrometer an seinen endgültigen Bestimmungsort, die neu errichtete KATRIN-Experimentierhalle auf dem Gelände des Forschungszentrums Karlsruhe, gehoben.

Zu diesen Aktionen sind Vertreter der Medien herzlich willkommen. Um Informationen auszutauschen und offene Fragen zu beantworten, laden wir außerdem zu einer Pressekonferenz am Samstag, dem 25. November um 10.00 Uhr, in die Rheinhalle Leopoldshafen in der Hafenstraße ein und bitten um Anmeldung auf beigefügtem Formular. (Bitte beachten: Wegen der erforderlichen Straßensperrungen ist eine Zufahrt nur nach vorheriger Anmeldung möglich!)

Die zentrale Einheit des KArlsruher TRItium Neutrino Experimentes KATRIN, das so genannte Hauptspektrometer, begann seine 8800 Kilometer lange Seereise vom bayerischen Deggendorf ins badische Karlsruhe am 28. September 2006. Wegen der Dimensionen des Spektrometers mit einer Länge von 24 Metern, einem Durchmesser von 10 Metern und einem Gewicht von 200 Tonnen kam der Landweg nicht in Frage.

So ging das Spektrometer auf eine Reise rund um Europa: Auf der Donau wurde es zum Schwarzen Meer transportiert, dort umgeladen und per Hochseeschiff über Bosporus, Ägäis, Ionisches Meer, Mittelmeer, Gibraltar, Atlantik, Golf von Biskaya, Ärmelkanal, Nordsee nach Antwerpen gebracht. Nach erneutem Umladen ist das Spektrometer nun per Rheinschiff nach Eggenstein-Leopoldshafen bei Rheinkilometer 372 nahe dem Forschungszentrum unterwegs. Dort wird es am frühen Morgen des 25. November ankommen und ab 8.00 Uhr mit Hilfe des größten mobilen Schwerlastkrans in Europa auf zwei nebeneinander stehende Tieflader verladen werden.

Um 9.00 Uhr beginnt die größte logistische Herausforderung der Reise: die letzte Etappe vom Rhein bei Eggenstein-Leopoldshafen zum Forschungszentrum. Die 7 Kilometer lange Strecke, auf der die Tieflader die engen Straßen von Leopoldshafen passieren, musste präzise geplant werden, da oft nur wenige Zentimeter Zwischenraum für den Spektrometertank verbleiben. Nach einer weiteren Hürde, der Überquerung der B 36, wird der Behälter am Nachmittag im Forschungszentrum ankommen.

Den endgültigen Standort wird der Spektrometertank am 29. November einnehmen: Mit Hilfe des vom Rhein ins Forschungszentrum umgesetzten Krans wird er durch das dann wieder geöffnete Hallendach in die große Experimentierhalle von KATRIN gehoben. Auch zu dieser Aktion (ab 9.00 Uhr) können sich Medienvertreter mit beigefügtem Formular anmelden.

Wissenschaftlich-technischer Hintergrund

Im Forschungszentrum Karlsruhe entsteht zurzeit mit KATRIN (KArlsruher TRItium Neutrino Experiment) die präziseste Waage der Welt: Mit KATRIN soll die Masse von Neutrinos gemessen werden. KATRIN nutzt denselben Effekt, aufgrund dessen der Physiker Wolfgang Pauli 1930 das Neutrino voraussagte: Beim Beta-Zerfall eines Atomkerns wird nicht nur ein Neutron in ein Proton umgewandelt und ein Elektron emittiert, sondern es entsteht auch ein weiteres Teilchen, das Neutrino. Dieses elektrisch ungeladene und schwer nachweisbare Teilchen trägt einen Teil der beim Zerfall freiwerdenden Energie fort. Die kleinstmögliche Energie, die das Neutrino forttragen kann, ist gemäß Einsteins Äquivalenzrelation seine Ruhemasse. Die Maximalenergie des emittierten Elektrons entspricht dann der Zerfallsenergie vermindert um die Ruhemasse des Neutrinos. Die Form des Energiespektrums der Elektronen gibt daher Aufschluss über die Größe der Neutrinomasse. Das ideale Element für die Untersuchungen ist der Beta-Strahler Tritium, ein Wasserstoffisotop, das mit einer Halbwertszeit von 12,3 Jahren zerfällt.

KATRIN ist insgesamt 70 Meter lang und besteht aus drei Hauptkomponenten: einer hochintensiven Tritium-Quelle zur Erzeugung der Elektronen, einem System aus zwei Spektrometern zur Bestimmung ihrer Energie sowie einem Detektor für den Nachweis der Elektronen. Das Herzstück ist dabei das Hauptspektrometer mit einer Länge von 24 Metern und einem Durchmesser von 10 Metern. In diesem Spektrometer wird die Energie der beim Tritiumzerfall entstehenden Elektronen mit bisher unerreichter Genauigkeit gemessen werden. Hierzu muss der Tank auf eine extrem stabile Hochspannung von 18600 Volt gelegt werden. Um diesen Messprozess ohne Störungen durchführen zu können, muss im Spektrometertank ein Ultrahochvakuum (UHV) erzeugt werden. Mit seiner Oberfläche von mehr als 650 Quadratmetern und einem Volumen von 1250 Kubikmetern ist KATRIN der weltweit größte bisher hergestellte UHV-Tank.

Die Anordnung ist so ausgelegt, dass die bisherige experimentelle Empfindlichkeit zur Messung der Neutrinomasse um einen Faktor 100 verbessert wird. KATRIN stößt damit erstmals in den für kosmologische Fragestellungen interessanten Massenbereich vor. Dementsprechend hoch sind die Erwartungen der Kosmologen und Teilchenphysiker an KATRIN - ebenso hoch sind aber auch die technologischen Herausforderungen beim Aufbau der Neutrinowaage.

Das Forschungszentrum Karlsruhe ist als Standort für dieses Experiment ideal geeignet. Weltweit nur hier sind alle notwendigen fachlichen Voraussetzungen zu finden: das europaweit einmalige Tritium-Labor Karlsruhe (TLK), Erfahrungen mit Hochvakuum und Kryotechnik für große wissenschaftliche Apparaturen, Erfahrungen in der Supraleiterentwicklung, Know-how und Infrastruktur für Bau und Betrieb solcher Großanlagen und natürlich Exzellenz in Neutrino- und Astroteilchen-Physik.

Aus diesem Grunde hat sich eine internationale Kollaboration von mehr als 120 Wissenschaftlern, Technikern und Studenten zu einem 'Weltexperiment' zusammengefunden, an dem praktisch alle auf dem Gebiet der Neutrinomassenbestimmung engagierten Forschungseinrichtungen beteiligt sind und ihre spezielle Expertise einbringen. Von deutscher Seite sind beteiligt die Universitäten Karlsruhe, Münster, Mainz und Bonn sowie die Fachhochschule Fulda.

Sobald der Spektrometertank sein endgültiges 'Zuhause' in der KATRIN Experimentierhalle gefunden hat, beginnt für die Wissenschaftler und Techniker vor Ort die Arbeit. In Reinraumkleidung werden sie im Innern des Tanks über einen Zeitraum von mehreren Monaten zusätzliche Komponenten installieren, die für die Messungen erforderlich sind. Nach Abschluss aller Arbeiten wird KATRIN in den Jahren 2009/10 mit den mehrjährigen Messungen beginnen um endgültig die Frage zu beantworten: Wie schwer ist ein Neutrino?

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Dr. Joachim Hoffmann | idw
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: Hauptspektrometer KATRIN Neutrino Spektrometer Spektrometertank

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften