Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planeten entstehen aus den Staubklumpen der Sternenscheibe

30.10.2006
Deutsche Forschungsgemeinschaft (DFG) bewilligt Forschergruppe

Die Entstehung von Planeten ist eine der Schlüsselfragen der modernen Astrophysik. Das rührt vor allem daher, dass die Frage nach der Planetenentstehung die Frage nach dem Ursprung des Lebens überhaupt auf der Erde einschließt. Mit der Entdeckung von bis jetzt 200 extrasolaren Planeten, die um sonnenähnliche Systeme kreisen, ist innerhalb der letzten Jahre das Interesse an solchen Himmelskörpern stark gestiegen.

Die Deutsche Forschungsgemeinschaft (DFG) hat letzte Woche entschieden, ein Forschungsvorhaben zur Planetenentstehung mit insgesamt circa 1,5 Millionen Euro für drei Jahre zu fördern. Bewilligt wurde eine Forschergruppe, welche die Zusammenarbeit von Wissenschaftlern in neun Arbeitsgruppen an den vier Universitäten Tübingen, Heidelberg, Braunschweig und Münster vorsieht. Unter dem Namen "The Formation of Planets: The critical first Growth Phase" will man dem Phänomen der Planetenentstehung weiter auf den Grund gehen. Zudem ist das Max-Planck-Institut für Astronomie in Heidelberg an dem Projekt beteiligt; Sprecher der Forschergruppe ist Prof. Dr. Wilhelm Kley vom Institut für Astronomie und Astrophysik der Universität Tübingen.

Die Entstehung eines Planeten vollzieht sich parallel zur Entstehung eines Sterns. Ein Planet ist sozusagen ein Nebenprodukt, das bei der Entstehung eines Sterns entsteht. Sterne, wie die Sonne auch, sind bei ihrer Entstehung umgeben von einer Scheibe (protoplanetare Scheibe), die in etwa den Ringen des Saturns ähnelt. Im Gegensatz zu diesen Ringen aber, die nur aus Staub und Eis bestehen, setzt sich die Scheibe eines jungen Sterns aus einer Mischung von Staub, Eis und Gas zusammen. Der erste Schritt von den Bestandteilen der Scheibe hin zum Planeten ist die Gerinnung von Staubteilchen zu immer größeren Staubklumpen (Staubaggregate). Auch Zusammenstöße zwischen den Partikeln führen dazu, dass sie aneinander haften und größere Aggregate bilden. Diese vergrößern sich durch eine Sequenz von haftenden Stößen von einem Mikrometer bis hin zu vielen tausend Kilometern. Letzteres ist dann der fertige Planet.

Die Forschergruppe beschäftigt sich hauptsächlich mit dieser ersten Phase der Planetenentstehung, das heißt mit dem Wachstum von Staubteilchen. Dazu werden umfangreiche Experimente durchgeführt. An den Universitäten in Braunschweig und Münster werden seit einigen Jahren Partikel-Zusammenstöße im Labor simuliert. Dazu werden Aggregate, die aus Milliarden von Quarz-Kügelchen aufgebaut sind, mit Geschwindigkeiten von bis zu zehn Meter pro Sekunde aufeinander geschossen, und so ihre Haftungseigenschaften und die inneren physikalischen Eigenschaften der porösen Staubklumpen untersucht. Die Forscher in Heidelberg widmen sich der Frage, wie sich die Zusammensetzung der Staubaggregate bei hohen Temperaturen verändert. Eine solche Veränderung kann Auswirkungen auf das Stoß-Verhalten haben. An der Universität Tübingen und am Heidelberger Max-Planck-Institut für Astronomie wird erforscht, wie diese Erkenntnisse sich sowohl auf die Verteilung als auch auf die großräumige Bewegung der Partikel in der Scheibe auswirken und wie dies wiederum die Entstehung von Planeten beeinflusst. Zudem möchte man herausfinden, welche beobachtbaren Effekte man künftig mit astronomischen Methoden untersuchen kann.

Die gesamte Planetenbildung stellt sich als ein höchst komplexer Prozess dar, der verschiedene Aspekte der Physik, der Chemie, der Astronomie und der Mineralogie umfasst. Dem soll das interdisziplinär angelegte Forschungsprojekt Rechnung tragen.

Nähere Informationen:

Prof. Dr. Wilhelm Kley
Institut für Astronomie und Astrophysik
Computational Physics
Auf der Morgenstelle 10
72076 Tübingen
Tel.: (07071) 29-74007 (privat: 07071/ 640085)
Fax: (07071) 29-5094
E-Mail: wilhelm.kley@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.tat.physik.uni-tuebingen.de/~kley
http://www.uni-tuebingen.de/

Weitere Berichte zu: Astronomie Planetenentstehung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie