Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Planeten entstehen aus den Staubklumpen der Sternenscheibe

30.10.2006
Deutsche Forschungsgemeinschaft (DFG) bewilligt Forschergruppe

Die Entstehung von Planeten ist eine der Schlüsselfragen der modernen Astrophysik. Das rührt vor allem daher, dass die Frage nach der Planetenentstehung die Frage nach dem Ursprung des Lebens überhaupt auf der Erde einschließt. Mit der Entdeckung von bis jetzt 200 extrasolaren Planeten, die um sonnenähnliche Systeme kreisen, ist innerhalb der letzten Jahre das Interesse an solchen Himmelskörpern stark gestiegen.

Die Deutsche Forschungsgemeinschaft (DFG) hat letzte Woche entschieden, ein Forschungsvorhaben zur Planetenentstehung mit insgesamt circa 1,5 Millionen Euro für drei Jahre zu fördern. Bewilligt wurde eine Forschergruppe, welche die Zusammenarbeit von Wissenschaftlern in neun Arbeitsgruppen an den vier Universitäten Tübingen, Heidelberg, Braunschweig und Münster vorsieht. Unter dem Namen "The Formation of Planets: The critical first Growth Phase" will man dem Phänomen der Planetenentstehung weiter auf den Grund gehen. Zudem ist das Max-Planck-Institut für Astronomie in Heidelberg an dem Projekt beteiligt; Sprecher der Forschergruppe ist Prof. Dr. Wilhelm Kley vom Institut für Astronomie und Astrophysik der Universität Tübingen.

Die Entstehung eines Planeten vollzieht sich parallel zur Entstehung eines Sterns. Ein Planet ist sozusagen ein Nebenprodukt, das bei der Entstehung eines Sterns entsteht. Sterne, wie die Sonne auch, sind bei ihrer Entstehung umgeben von einer Scheibe (protoplanetare Scheibe), die in etwa den Ringen des Saturns ähnelt. Im Gegensatz zu diesen Ringen aber, die nur aus Staub und Eis bestehen, setzt sich die Scheibe eines jungen Sterns aus einer Mischung von Staub, Eis und Gas zusammen. Der erste Schritt von den Bestandteilen der Scheibe hin zum Planeten ist die Gerinnung von Staubteilchen zu immer größeren Staubklumpen (Staubaggregate). Auch Zusammenstöße zwischen den Partikeln führen dazu, dass sie aneinander haften und größere Aggregate bilden. Diese vergrößern sich durch eine Sequenz von haftenden Stößen von einem Mikrometer bis hin zu vielen tausend Kilometern. Letzteres ist dann der fertige Planet.

Die Forschergruppe beschäftigt sich hauptsächlich mit dieser ersten Phase der Planetenentstehung, das heißt mit dem Wachstum von Staubteilchen. Dazu werden umfangreiche Experimente durchgeführt. An den Universitäten in Braunschweig und Münster werden seit einigen Jahren Partikel-Zusammenstöße im Labor simuliert. Dazu werden Aggregate, die aus Milliarden von Quarz-Kügelchen aufgebaut sind, mit Geschwindigkeiten von bis zu zehn Meter pro Sekunde aufeinander geschossen, und so ihre Haftungseigenschaften und die inneren physikalischen Eigenschaften der porösen Staubklumpen untersucht. Die Forscher in Heidelberg widmen sich der Frage, wie sich die Zusammensetzung der Staubaggregate bei hohen Temperaturen verändert. Eine solche Veränderung kann Auswirkungen auf das Stoß-Verhalten haben. An der Universität Tübingen und am Heidelberger Max-Planck-Institut für Astronomie wird erforscht, wie diese Erkenntnisse sich sowohl auf die Verteilung als auch auf die großräumige Bewegung der Partikel in der Scheibe auswirken und wie dies wiederum die Entstehung von Planeten beeinflusst. Zudem möchte man herausfinden, welche beobachtbaren Effekte man künftig mit astronomischen Methoden untersuchen kann.

Die gesamte Planetenbildung stellt sich als ein höchst komplexer Prozess dar, der verschiedene Aspekte der Physik, der Chemie, der Astronomie und der Mineralogie umfasst. Dem soll das interdisziplinär angelegte Forschungsprojekt Rechnung tragen.

Nähere Informationen:

Prof. Dr. Wilhelm Kley
Institut für Astronomie und Astrophysik
Computational Physics
Auf der Morgenstelle 10
72076 Tübingen
Tel.: (07071) 29-74007 (privat: 07071/ 640085)
Fax: (07071) 29-5094
E-Mail: wilhelm.kley@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.tat.physik.uni-tuebingen.de/~kley
http://www.uni-tuebingen.de/

Weitere Berichte zu: Astronomie Planetenentstehung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie