Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Bose-Einstein-Kondensation bei Raumtemperatur

05.10.2006
Physiker der TU Kaiserslautern und der Universität Münster erreichen Super-Quantenzustand von magnetischen Wellen ohne Kühlung.

Die Bose-Einstein-Kondensation beschreibt einen neuartigen Zustand von Materie, bei dem alle Atome ihre Eigenständigkeit verlieren und unisono - wie ein einzelnes Quantenobjekt - im Gleichtakt schwingen. Dieses "Superatom" ist eines der faszinierendsten Phänomene der Physik, da die Quantennatur der Materie hier deutlich hervortritt. Es ist benannt nach Satyendra Nath Bose und Albert Einstein, die die Bose-Einstein-Kondensation bereits 1924 vorhergesagt hatten.

Die Bose-Einstein-Kondensation findet jedoch nur unter ganz bestimmten Bedingungen statt: die Dichte der Teilchen muss einen kritischen Wert überschreiten. Obwohl Albert Einstein überzeugt war, dass dies auch bei typischen Umgebungstemperaturen gelingen müsste, ist die Bose-Einstein Kondensation bisher nur bei sehr kleinen Temperaturen nahe dem absoluten Nullpunkt gelungen. Durch die Schwierigkeit, ultratiefer Temperaturen zu erzeugen, gehörte die Erzeugung eines Bose-Superatoms zu den herausfordernsten Aufgaben der modernen experimentellen Physik des letzten Jahrhunderts. Erst im Jahr 2001 wurde die experimentelle Beobachtung einer Bose-Einstein-Kondensation in extrem ultra-kalten, verdünnten Alkali-Gasen mit dem Nobelpreis für Physik ausgezeichnet. Es schien seitdem völlig unmöglich, Bose-Einstein-Kondensation von Atomen bei Raumtemperatur zu beobachten, da die erforderlichen Atomdichten bei Raumtemperatur sofort zur Bildung von Flüssigkeiten oder Festkörper führen.

Allerdings können nicht nur Atome diese Kondensation zeigen. Gase magnetischer Quanten in Festkörpern, sogenannte Magnonengase, sind Atomgasen sehr ähnlich und existieren bereits bei Raumtemperatur. Allerdings können auch sie nicht einfach in den Zustand der Bose-Einstein-Kondensation versetzt werden, da die erforderliche Magnonendichte genau wie beim Atomgas nicht erreicht werden kann. Einer Gruppe von Physikern um Prof. Dr. Burkard Hillebrands am Fachbereich Physik der Technischen Universität Kaiserslautern und um Prof. Dr. Sergej Demokritov von der Westfälischen Wilhelms-Universität Münster, ein früherer Mitarbeiter von Prof. Hillebrands, in Zusammenarbeit mit Kollegen aus den USA und der Ukraine ist es jedoch jetzt gelungen, dieses Hindernis auf dem Weg zu einem Bose-Einstein-Kondensat bei Raumtemperatur zu überwinden. Mit Hilfe von Mikrowellen erzeugen sie zusätzliche Magnonen und mischen sie den vorhandenen Magnonen bei. Obwohl die zusätzlichen Magnonen nur eine Millionstel Sekunde existieren, reicht diese Zeit den Wissenschaftlern, um das Verhalten des magnetischen Supergases mit einem Laserstrahl als Messfühler zu untersuchen.

So konnten die Wissenschaftler erfolgreich zeigen, dass der kollektive Quantenzustand bei Raumtemperatur erreicht wird, wie es Albert Einstein vorhergesagt hatte: ein magnetisches Bose-Einstein-Kondensat ohne jede Kühlung.

Ein Bericht über diese Arbeit wurde am 29. September 2006 in der international renommierten Zeitschrift "Nature" veröffentlicht.

Thomas Jung | idw
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Bose-Einstein-Kondensation Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen