Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnersuche im Eierkarton

25.09.2006
Max-Planck-Forscher verschmelzen Rubidiumatome in einem Mott-Isolator zu Molekülen

Moleküle könnten die Informationsträger der Zukunft sein - sie gelten jedenfalls als mögliche Kandidaten für Quantenbits, den Speicher- und Recheneinheiten eines Quantencomputers. Physiker des Max-Planck-Instituts für Quantenoptik in Garching haben jetzt Moleküle in einer regelmäßigen Anordnung hergestellt, die einem Mott-Isolator ähnelt. Moleküle so geordnet zu gruppieren und zu fixieren, ist eine wichtige Bedingung, um mit ihnen Informationen zu verarbeiten. Die Wissenschaftler fixierten dazu Rubidium-Atome in einem Gitter aus überlagerten Laserstrahlen, das an einen Eierkarton erinnert. In jede Mulde des Eierkartons füllten sie zwei Atome. Diese verschmolzen sie anschließend mit Hilfe eines Magnetfeldes zu Molekülen. (Nature Physics, 24. September 2006 / DOI: 10.1038/nphys415)


Atome und Moleküle im optischen Gitter: Im Zentrum sitzt an jedem Gitterplatz ein Molekül (rot), am Rand besetzen einzelne Rubidiumatome die Plätze (gelb). In Wirklichkeit fangen die Garchinger Physiker mehrere Zehntausend Atome in dem Gitter und blasen die Atome mit einem Laser weg, die sie nicht zu Molekülen zusammengeführt haben. Bild: MPI für Quantenoptik


Atome und Moleküle im Interferenz-Bild: Links erzeugen die Atome ein Interferenzmuster, das an den Satellitenpeaks zu erkennen ist. In der Mitte befinden sich Moleküle und Atome in dem Gitter. Die Moleküle sind unsichtbar, das Signal stammt von den Atomen auf einzelnen Gitterplätzen. Rechts haben die Physiker die Molekülbindungen wieder gelöst, so dass wieder alle Atome zum Interferenzsignal beitragen. Bild: MPI für Quantenoptik

Moleküle sind für Physiker besonders interessant, um Quanteninformationen zu verarbeiten. Denn Moleküle können elektrisch wechselwirken - zumindest wenn sie polar sind, sich also aus unterschiedlichen Atomen zusammensetzen und einen positiven und einen negativen Ladungspol besitzen. Um als Quantenbit brauchbar zu sein, müssen sich die Moleküle aber nahe des absoluten Temperaturnullpunkts fast zum Stillstand bringen lassen - zum Beispiel in einem Eierkarton aus Laserlicht. Doch anders als einzelne Atome lassen sich Moleküle nicht so leicht abbremsen und kühlen, weil ihre Atome auch gegeneinander schwingen und sich das ganze Molekül um mehrere Achsen drehen kann.

Um dieses Problem zu lösen, haben die Garchinger Forscher einen Trick angewandt: "Wir umgehen diese Schwierigkeit, da wir die Moleküle erst an den einzelnen Plätzen des Gitters erzeugen", sagt Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik. Die Forscher aus seiner Abteilung haben dafür zunächst einen Mott-Isolator aus Rubidium-Atomen erzeugt. Sie haben ein atomares Rubidium-Gas bis auf ein zehnmillionstel Grad über dem absoluten Nullpunkt abgekühlt und dieses Bose-Einstein-Kondensat in einem optischen Gitter eingefangen. Darin ordneten sich die Atome wie in gestapelten Eierkartons aus Licht. Die Erhebungen und Mulden der Eierkartons formen die Physiker, indem sie mehrere Laserstrahlen in geeigneter Weise überlagern. Sind die Mulden tief genug, können die Atome die Mulden nicht verlassen. Es bildet sich der sehr geordnete Zustand des Mott-Isolators. Die Garchinger Physiker haben nun einen Mott-Isolator erzeugt, in dessen Mitte die Rubidium-Atome zu zweit in den Mulden sitzen. Nur am Rand des optischen Gitters gibt es Mulden mit einzelnen Atomen.

... mehr zu:
»Atom »Molekül »Mott-Isolator

In den Mulden, in denen zwei Atome liegen, bilden die Physiker dann Pärchen. Dazu nutzen sie die Feshbach-Resonanz: Indem sie ein Magnetfeld anlegen und seine Stärke langsam verändern, bringen sie die Teilchen zusammen. Es wird für die Atome ab einer bestimmten Stärke des Magnetfeldes nämlich energetisch günstiger, eine Bindung zu ihrem jeweiligen Partner im Eierkarton einzugehen, als weiter ein Single-Dasein zu fristen.

Die Atome, die keinen Partner in ihrer Mulde haben und deshalb zum Single-Dasein verdammt sind, entfernen die Physiker anschließend aus dem Gitter. Für sie gibt es keine Verwendung mehr, wie Gerhard Rempe ausführt: "Wir haben mit einem Laserstrahl alle einzelnen Atome aus dem Gitter weggeblasen und hatten dann einen Zustand mit genau einem Molekül an jedem Platz des optischen Gitters."

Die Bindung der Atome untereinander hält aber nur, solange es die Physiker zulassen: Fahren sie das Magnetfeld auf den ursprünglichen Wert zurück, trennen sich die Atome voneinander und nehmen wieder ihren Ausgangzustand ein. Diesen Umstand nutzen die Max-Planck-Wissenschaftler, um zu beweisen, dass ihr Experiment gelungen ist. Denn sie können nur die Atome nachweisen. Die Moleküle aus zwei Rubidium-Atomen sind für sie unsichtbar. "Da wir die Bindung zwischen den Atomen lösen und dann wieder zwei Atome in den Mulden beobachten konnten, haben wir ausgeschlossen, dass die Moleküle einfach aus dem Gitter entwischt sind", sagt Thomas Volz, der das Experiment zusammen mit seinen Kollegen durchgeführt hat.

Als nächster Schritt bietet es sich nun an, die Technik des Garchinger Experimentes auf polare Moleküle zu übertragen, die als Quantenbits besonders interessant sind.

Originalveröffentlichung:

Thomas Volz, Niels Syassen, Dominik M. Bauer, Eberhard Hansis, Stephan Dürr and Gerhard Rempe

Preparation of a quantum state with one molecule at each site of an optical lattice

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Molekül Mott-Isolator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy