Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnersuche im Eierkarton

25.09.2006
Max-Planck-Forscher verschmelzen Rubidiumatome in einem Mott-Isolator zu Molekülen

Moleküle könnten die Informationsträger der Zukunft sein - sie gelten jedenfalls als mögliche Kandidaten für Quantenbits, den Speicher- und Recheneinheiten eines Quantencomputers. Physiker des Max-Planck-Instituts für Quantenoptik in Garching haben jetzt Moleküle in einer regelmäßigen Anordnung hergestellt, die einem Mott-Isolator ähnelt. Moleküle so geordnet zu gruppieren und zu fixieren, ist eine wichtige Bedingung, um mit ihnen Informationen zu verarbeiten. Die Wissenschaftler fixierten dazu Rubidium-Atome in einem Gitter aus überlagerten Laserstrahlen, das an einen Eierkarton erinnert. In jede Mulde des Eierkartons füllten sie zwei Atome. Diese verschmolzen sie anschließend mit Hilfe eines Magnetfeldes zu Molekülen. (Nature Physics, 24. September 2006 / DOI: 10.1038/nphys415)


Atome und Moleküle im optischen Gitter: Im Zentrum sitzt an jedem Gitterplatz ein Molekül (rot), am Rand besetzen einzelne Rubidiumatome die Plätze (gelb). In Wirklichkeit fangen die Garchinger Physiker mehrere Zehntausend Atome in dem Gitter und blasen die Atome mit einem Laser weg, die sie nicht zu Molekülen zusammengeführt haben. Bild: MPI für Quantenoptik


Atome und Moleküle im Interferenz-Bild: Links erzeugen die Atome ein Interferenzmuster, das an den Satellitenpeaks zu erkennen ist. In der Mitte befinden sich Moleküle und Atome in dem Gitter. Die Moleküle sind unsichtbar, das Signal stammt von den Atomen auf einzelnen Gitterplätzen. Rechts haben die Physiker die Molekülbindungen wieder gelöst, so dass wieder alle Atome zum Interferenzsignal beitragen. Bild: MPI für Quantenoptik

Moleküle sind für Physiker besonders interessant, um Quanteninformationen zu verarbeiten. Denn Moleküle können elektrisch wechselwirken - zumindest wenn sie polar sind, sich also aus unterschiedlichen Atomen zusammensetzen und einen positiven und einen negativen Ladungspol besitzen. Um als Quantenbit brauchbar zu sein, müssen sich die Moleküle aber nahe des absoluten Temperaturnullpunkts fast zum Stillstand bringen lassen - zum Beispiel in einem Eierkarton aus Laserlicht. Doch anders als einzelne Atome lassen sich Moleküle nicht so leicht abbremsen und kühlen, weil ihre Atome auch gegeneinander schwingen und sich das ganze Molekül um mehrere Achsen drehen kann.

Um dieses Problem zu lösen, haben die Garchinger Forscher einen Trick angewandt: "Wir umgehen diese Schwierigkeit, da wir die Moleküle erst an den einzelnen Plätzen des Gitters erzeugen", sagt Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik. Die Forscher aus seiner Abteilung haben dafür zunächst einen Mott-Isolator aus Rubidium-Atomen erzeugt. Sie haben ein atomares Rubidium-Gas bis auf ein zehnmillionstel Grad über dem absoluten Nullpunkt abgekühlt und dieses Bose-Einstein-Kondensat in einem optischen Gitter eingefangen. Darin ordneten sich die Atome wie in gestapelten Eierkartons aus Licht. Die Erhebungen und Mulden der Eierkartons formen die Physiker, indem sie mehrere Laserstrahlen in geeigneter Weise überlagern. Sind die Mulden tief genug, können die Atome die Mulden nicht verlassen. Es bildet sich der sehr geordnete Zustand des Mott-Isolators. Die Garchinger Physiker haben nun einen Mott-Isolator erzeugt, in dessen Mitte die Rubidium-Atome zu zweit in den Mulden sitzen. Nur am Rand des optischen Gitters gibt es Mulden mit einzelnen Atomen.

... mehr zu:
»Atom »Molekül »Mott-Isolator

In den Mulden, in denen zwei Atome liegen, bilden die Physiker dann Pärchen. Dazu nutzen sie die Feshbach-Resonanz: Indem sie ein Magnetfeld anlegen und seine Stärke langsam verändern, bringen sie die Teilchen zusammen. Es wird für die Atome ab einer bestimmten Stärke des Magnetfeldes nämlich energetisch günstiger, eine Bindung zu ihrem jeweiligen Partner im Eierkarton einzugehen, als weiter ein Single-Dasein zu fristen.

Die Atome, die keinen Partner in ihrer Mulde haben und deshalb zum Single-Dasein verdammt sind, entfernen die Physiker anschließend aus dem Gitter. Für sie gibt es keine Verwendung mehr, wie Gerhard Rempe ausführt: "Wir haben mit einem Laserstrahl alle einzelnen Atome aus dem Gitter weggeblasen und hatten dann einen Zustand mit genau einem Molekül an jedem Platz des optischen Gitters."

Die Bindung der Atome untereinander hält aber nur, solange es die Physiker zulassen: Fahren sie das Magnetfeld auf den ursprünglichen Wert zurück, trennen sich die Atome voneinander und nehmen wieder ihren Ausgangzustand ein. Diesen Umstand nutzen die Max-Planck-Wissenschaftler, um zu beweisen, dass ihr Experiment gelungen ist. Denn sie können nur die Atome nachweisen. Die Moleküle aus zwei Rubidium-Atomen sind für sie unsichtbar. "Da wir die Bindung zwischen den Atomen lösen und dann wieder zwei Atome in den Mulden beobachten konnten, haben wir ausgeschlossen, dass die Moleküle einfach aus dem Gitter entwischt sind", sagt Thomas Volz, der das Experiment zusammen mit seinen Kollegen durchgeführt hat.

Als nächster Schritt bietet es sich nun an, die Technik des Garchinger Experimentes auf polare Moleküle zu übertragen, die als Quantenbits besonders interessant sind.

Originalveröffentlichung:

Thomas Volz, Niels Syassen, Dominik M. Bauer, Eberhard Hansis, Stephan Dürr and Gerhard Rempe

Preparation of a quantum state with one molecule at each site of an optical lattice

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Molekül Mott-Isolator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie