Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnersuche im Eierkarton

25.09.2006
Max-Planck-Forscher verschmelzen Rubidiumatome in einem Mott-Isolator zu Molekülen

Moleküle könnten die Informationsträger der Zukunft sein - sie gelten jedenfalls als mögliche Kandidaten für Quantenbits, den Speicher- und Recheneinheiten eines Quantencomputers. Physiker des Max-Planck-Instituts für Quantenoptik in Garching haben jetzt Moleküle in einer regelmäßigen Anordnung hergestellt, die einem Mott-Isolator ähnelt. Moleküle so geordnet zu gruppieren und zu fixieren, ist eine wichtige Bedingung, um mit ihnen Informationen zu verarbeiten. Die Wissenschaftler fixierten dazu Rubidium-Atome in einem Gitter aus überlagerten Laserstrahlen, das an einen Eierkarton erinnert. In jede Mulde des Eierkartons füllten sie zwei Atome. Diese verschmolzen sie anschließend mit Hilfe eines Magnetfeldes zu Molekülen. (Nature Physics, 24. September 2006 / DOI: 10.1038/nphys415)


Atome und Moleküle im optischen Gitter: Im Zentrum sitzt an jedem Gitterplatz ein Molekül (rot), am Rand besetzen einzelne Rubidiumatome die Plätze (gelb). In Wirklichkeit fangen die Garchinger Physiker mehrere Zehntausend Atome in dem Gitter und blasen die Atome mit einem Laser weg, die sie nicht zu Molekülen zusammengeführt haben. Bild: MPI für Quantenoptik


Atome und Moleküle im Interferenz-Bild: Links erzeugen die Atome ein Interferenzmuster, das an den Satellitenpeaks zu erkennen ist. In der Mitte befinden sich Moleküle und Atome in dem Gitter. Die Moleküle sind unsichtbar, das Signal stammt von den Atomen auf einzelnen Gitterplätzen. Rechts haben die Physiker die Molekülbindungen wieder gelöst, so dass wieder alle Atome zum Interferenzsignal beitragen. Bild: MPI für Quantenoptik

Moleküle sind für Physiker besonders interessant, um Quanteninformationen zu verarbeiten. Denn Moleküle können elektrisch wechselwirken - zumindest wenn sie polar sind, sich also aus unterschiedlichen Atomen zusammensetzen und einen positiven und einen negativen Ladungspol besitzen. Um als Quantenbit brauchbar zu sein, müssen sich die Moleküle aber nahe des absoluten Temperaturnullpunkts fast zum Stillstand bringen lassen - zum Beispiel in einem Eierkarton aus Laserlicht. Doch anders als einzelne Atome lassen sich Moleküle nicht so leicht abbremsen und kühlen, weil ihre Atome auch gegeneinander schwingen und sich das ganze Molekül um mehrere Achsen drehen kann.

Um dieses Problem zu lösen, haben die Garchinger Forscher einen Trick angewandt: "Wir umgehen diese Schwierigkeit, da wir die Moleküle erst an den einzelnen Plätzen des Gitters erzeugen", sagt Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik. Die Forscher aus seiner Abteilung haben dafür zunächst einen Mott-Isolator aus Rubidium-Atomen erzeugt. Sie haben ein atomares Rubidium-Gas bis auf ein zehnmillionstel Grad über dem absoluten Nullpunkt abgekühlt und dieses Bose-Einstein-Kondensat in einem optischen Gitter eingefangen. Darin ordneten sich die Atome wie in gestapelten Eierkartons aus Licht. Die Erhebungen und Mulden der Eierkartons formen die Physiker, indem sie mehrere Laserstrahlen in geeigneter Weise überlagern. Sind die Mulden tief genug, können die Atome die Mulden nicht verlassen. Es bildet sich der sehr geordnete Zustand des Mott-Isolators. Die Garchinger Physiker haben nun einen Mott-Isolator erzeugt, in dessen Mitte die Rubidium-Atome zu zweit in den Mulden sitzen. Nur am Rand des optischen Gitters gibt es Mulden mit einzelnen Atomen.

... mehr zu:
»Atom »Molekül »Mott-Isolator

In den Mulden, in denen zwei Atome liegen, bilden die Physiker dann Pärchen. Dazu nutzen sie die Feshbach-Resonanz: Indem sie ein Magnetfeld anlegen und seine Stärke langsam verändern, bringen sie die Teilchen zusammen. Es wird für die Atome ab einer bestimmten Stärke des Magnetfeldes nämlich energetisch günstiger, eine Bindung zu ihrem jeweiligen Partner im Eierkarton einzugehen, als weiter ein Single-Dasein zu fristen.

Die Atome, die keinen Partner in ihrer Mulde haben und deshalb zum Single-Dasein verdammt sind, entfernen die Physiker anschließend aus dem Gitter. Für sie gibt es keine Verwendung mehr, wie Gerhard Rempe ausführt: "Wir haben mit einem Laserstrahl alle einzelnen Atome aus dem Gitter weggeblasen und hatten dann einen Zustand mit genau einem Molekül an jedem Platz des optischen Gitters."

Die Bindung der Atome untereinander hält aber nur, solange es die Physiker zulassen: Fahren sie das Magnetfeld auf den ursprünglichen Wert zurück, trennen sich die Atome voneinander und nehmen wieder ihren Ausgangzustand ein. Diesen Umstand nutzen die Max-Planck-Wissenschaftler, um zu beweisen, dass ihr Experiment gelungen ist. Denn sie können nur die Atome nachweisen. Die Moleküle aus zwei Rubidium-Atomen sind für sie unsichtbar. "Da wir die Bindung zwischen den Atomen lösen und dann wieder zwei Atome in den Mulden beobachten konnten, haben wir ausgeschlossen, dass die Moleküle einfach aus dem Gitter entwischt sind", sagt Thomas Volz, der das Experiment zusammen mit seinen Kollegen durchgeführt hat.

Als nächster Schritt bietet es sich nun an, die Technik des Garchinger Experimentes auf polare Moleküle zu übertragen, die als Quantenbits besonders interessant sind.

Originalveröffentlichung:

Thomas Volz, Niels Syassen, Dominik M. Bauer, Eberhard Hansis, Stephan Dürr and Gerhard Rempe

Preparation of a quantum state with one molecule at each site of an optical lattice

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Molekül Mott-Isolator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics