Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Käfige aus dem Kolben

21.09.2006
Max-Planck-Forscher finden einen einfache Methode, um Germanium in eine metastabile, käfigförmige Struktur zu bringen

Elektronische Bauteile verdanken ihre Rechenkraft und ihre Speicherkapazität Halbleitern wie Silizium. Künftig könnte auch eine spezielle Form des Germaniums, in der seine Struktur aus einem Netz geräumiger Käfige aufgebaut ist, als Ausgangsmaterial für elektronische Bauelemente dienen - das zumindest sagen theoretische Untersuchungen voraus. Jetzt haben Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe einen Weg gefunden, diese neue, metastabile Modifikation des Elements Germanium auf relativ einfache Weise und in größeren Mengen herzustellen (Nature, 21. September 2006).


Käfigstruktur von Clathrat-II Germanium: In der elektronenmikroskopischen Abbildung erscheinen Atome dunkel, die Zwischenräume hell. Eine Computersimulation bestätigt das experimentelle Ergebnis (oben links eingefügt). Bild: Dr. Reiner Ramlau, MPI für Chemische Physik fester Stoffe


Clathrat-II Germanium ist eine neue Modifikation des Elements Germanium und setzt sich aus Polyedern mit 20 bzw. 28 Germaniumatomen (rot) zusammen. Die kleineren Polyeder (gelb) bilden so genannte Supertetraeder mit großen Hohlräumen. Bild: Michael Baitinger, MPI für Chemische Physik fester Stoffe

Ihre besondere Struktur gibt Clathraten besondere Eigenschaften: In den Käfigen, aus denen sie sich aufbauen, können sie etwa Atome anderer Elemente beherbergen, die die thermische Leitfähigkeit der Verbindungen beeinflussen. Daher eignen sie sich möglicherweise, um Thermoelektrika herzustellen, die Temperaturunterschiede in Strom verwandeln oder als Peltierelemente wie kleine Kühlaggregate wirken. Leere Clathrate eigenen sich dagegen anders als die bekannten Formen von Silizium und Germanium als Ausgangsstoff für optoelektronische Bauelemente wie Photodioden. Zumindest theoretisch.

Praktisch ließen sich die vielversprechenden Formen der Halbleiter bislang - wenn überhaupt - nur mit großem Aufwand herstellen. Jetzt haben die Max-Planck-Wissenschaftler aber einen überraschend einfachen Weg gefunden, Germanium in die käfigförmige Struktur zu bringen: Sie haben reaktive Verbindungen des Elements mit Natrium oder Kalium zu einer neuen Form des Elements reagieren lassen. Nach ihrem Rezept können die Dresdener Chemiker sowohl Clathrate mit leeren Käfigen synthetisieren als auch solche, in deren Hohlräumen Atome anderer Elemente sitzen.

... mehr zu:
»Chemiker »Silizium

Den Wissenschaftlern kam dabei der Zufall zu Hilfe, der ihnen eine effektivere und preiswerte Methode bescherte, um Clathrate zu synthetisieren. "Wir suchten eigentlich nach Lösungsmitteln für Zintl-Phasen dieser Elemente", sagt Michael Baitinger, der in der Abteilung von Prof.Yuri Grin an den Untersuchungen an Clathraten beteiligt war. Diese Silizium- beziehungsweise Germanium-Verbindungen, in denen die Halbmetalle ein ziemlich gespanntes negativ geladenes Atomgerüst bilden, reagieren auf Luft und Wasser sehr empfindlich - manche zersetzen sich sogar explosionsartig. Daher lösten die Wissenschaftler die Verbindungen in flüssigen organischen Salzen wie Dodecyltrimethylammoniumchlorid (DTAC).

"Dabei stellten wir fest, dass das DTAC die Zintl-Phasen bei relativ milden 300 Grad in Clathrate verwandeln. In nur zwei Tagen und mit Methoden, die in der organischen Chemie weit verbreitet sind." Diese Methoden machen die Synthese nicht nur preiswert, sondern eignen sich auch, um Clathrate in großem Maßstab zu produzieren oder in dünnen Schichten auf einem Trägermaterial abzuscheiden. Viel wichtiger ist für die Chemiker aber zunächst, dass sie einen prinzipiellen Weg gefunden haben, um aus leicht herstellbaren reaktiven Ausgangsverbindungen käfigförmige Strukturen aus Silizium oder Germanium zu erzeugen..

Normalerweise erhalten Chemiker Silizium- oder Germaniumclathrate nur bei sehr viel höheren Temperaturen, und auch die Reaktionszeiten sind deutlich länger. Da viele Clathrate jedoch metastabil sind, können sie bei höheren Temperaturen erst gar nicht entstehen. So wandelt sich auch Clathrat-II Germanium bei Temperaturen über 500 Grad in die bekannte Form α-Germanium um. Daher ist es über herkömmliche Hochtemperatursynthesen nicht zugänglich.

Um die überraschende Existenz von Clathrat-II Germanium zu belegen, haben die Wissenschaftler das Produkt anschließend mit einer ganzen Palette von Instrumenten untersucht: Elektronenbeugung (SAED) und hochauflösender Transmissionselektronenmikroskopie (HRTEM), um die Struktur aufzuklären, energiedispersiver Röntgenspektroskopie (EDXS) und Elektronen-Energieverlust Spektroskopie (EELS), um die Zusammensetzung herauszufinden.

Originalveröffentlichung:

Arnold M. Guloy, Reiner Ramlau, Zhongjia Tang, Walter Schnelle, Michael Baitinger and Yuri Grin
A guest-free germanium clathrate
Nature, 21. September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chemiker Silizium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics