Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Käfige aus dem Kolben

21.09.2006
Max-Planck-Forscher finden einen einfache Methode, um Germanium in eine metastabile, käfigförmige Struktur zu bringen

Elektronische Bauteile verdanken ihre Rechenkraft und ihre Speicherkapazität Halbleitern wie Silizium. Künftig könnte auch eine spezielle Form des Germaniums, in der seine Struktur aus einem Netz geräumiger Käfige aufgebaut ist, als Ausgangsmaterial für elektronische Bauelemente dienen - das zumindest sagen theoretische Untersuchungen voraus. Jetzt haben Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe einen Weg gefunden, diese neue, metastabile Modifikation des Elements Germanium auf relativ einfache Weise und in größeren Mengen herzustellen (Nature, 21. September 2006).


Käfigstruktur von Clathrat-II Germanium: In der elektronenmikroskopischen Abbildung erscheinen Atome dunkel, die Zwischenräume hell. Eine Computersimulation bestätigt das experimentelle Ergebnis (oben links eingefügt). Bild: Dr. Reiner Ramlau, MPI für Chemische Physik fester Stoffe


Clathrat-II Germanium ist eine neue Modifikation des Elements Germanium und setzt sich aus Polyedern mit 20 bzw. 28 Germaniumatomen (rot) zusammen. Die kleineren Polyeder (gelb) bilden so genannte Supertetraeder mit großen Hohlräumen. Bild: Michael Baitinger, MPI für Chemische Physik fester Stoffe

Ihre besondere Struktur gibt Clathraten besondere Eigenschaften: In den Käfigen, aus denen sie sich aufbauen, können sie etwa Atome anderer Elemente beherbergen, die die thermische Leitfähigkeit der Verbindungen beeinflussen. Daher eignen sie sich möglicherweise, um Thermoelektrika herzustellen, die Temperaturunterschiede in Strom verwandeln oder als Peltierelemente wie kleine Kühlaggregate wirken. Leere Clathrate eigenen sich dagegen anders als die bekannten Formen von Silizium und Germanium als Ausgangsstoff für optoelektronische Bauelemente wie Photodioden. Zumindest theoretisch.

Praktisch ließen sich die vielversprechenden Formen der Halbleiter bislang - wenn überhaupt - nur mit großem Aufwand herstellen. Jetzt haben die Max-Planck-Wissenschaftler aber einen überraschend einfachen Weg gefunden, Germanium in die käfigförmige Struktur zu bringen: Sie haben reaktive Verbindungen des Elements mit Natrium oder Kalium zu einer neuen Form des Elements reagieren lassen. Nach ihrem Rezept können die Dresdener Chemiker sowohl Clathrate mit leeren Käfigen synthetisieren als auch solche, in deren Hohlräumen Atome anderer Elemente sitzen.

... mehr zu:
»Chemiker »Silizium

Den Wissenschaftlern kam dabei der Zufall zu Hilfe, der ihnen eine effektivere und preiswerte Methode bescherte, um Clathrate zu synthetisieren. "Wir suchten eigentlich nach Lösungsmitteln für Zintl-Phasen dieser Elemente", sagt Michael Baitinger, der in der Abteilung von Prof.Yuri Grin an den Untersuchungen an Clathraten beteiligt war. Diese Silizium- beziehungsweise Germanium-Verbindungen, in denen die Halbmetalle ein ziemlich gespanntes negativ geladenes Atomgerüst bilden, reagieren auf Luft und Wasser sehr empfindlich - manche zersetzen sich sogar explosionsartig. Daher lösten die Wissenschaftler die Verbindungen in flüssigen organischen Salzen wie Dodecyltrimethylammoniumchlorid (DTAC).

"Dabei stellten wir fest, dass das DTAC die Zintl-Phasen bei relativ milden 300 Grad in Clathrate verwandeln. In nur zwei Tagen und mit Methoden, die in der organischen Chemie weit verbreitet sind." Diese Methoden machen die Synthese nicht nur preiswert, sondern eignen sich auch, um Clathrate in großem Maßstab zu produzieren oder in dünnen Schichten auf einem Trägermaterial abzuscheiden. Viel wichtiger ist für die Chemiker aber zunächst, dass sie einen prinzipiellen Weg gefunden haben, um aus leicht herstellbaren reaktiven Ausgangsverbindungen käfigförmige Strukturen aus Silizium oder Germanium zu erzeugen..

Normalerweise erhalten Chemiker Silizium- oder Germaniumclathrate nur bei sehr viel höheren Temperaturen, und auch die Reaktionszeiten sind deutlich länger. Da viele Clathrate jedoch metastabil sind, können sie bei höheren Temperaturen erst gar nicht entstehen. So wandelt sich auch Clathrat-II Germanium bei Temperaturen über 500 Grad in die bekannte Form α-Germanium um. Daher ist es über herkömmliche Hochtemperatursynthesen nicht zugänglich.

Um die überraschende Existenz von Clathrat-II Germanium zu belegen, haben die Wissenschaftler das Produkt anschließend mit einer ganzen Palette von Instrumenten untersucht: Elektronenbeugung (SAED) und hochauflösender Transmissionselektronenmikroskopie (HRTEM), um die Struktur aufzuklären, energiedispersiver Röntgenspektroskopie (EDXS) und Elektronen-Energieverlust Spektroskopie (EELS), um die Zusammensetzung herauszufinden.

Originalveröffentlichung:

Arnold M. Guloy, Reiner Ramlau, Zhongjia Tang, Walter Schnelle, Michael Baitinger and Yuri Grin
A guest-free germanium clathrate
Nature, 21. September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chemiker Silizium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hütchenspiel im Mikrokosmos
17.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
16.10.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungsnachrichten

3D-Mapping von Räumen mittels Radar

17.10.2017 | Energie und Elektrotechnik

Wirkstoffe aus der Natur

17.10.2017 | Biowissenschaften Chemie