Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenlogik für eine neue Generation von Atomuhren

21.09.2006
Innsbrucker Forscher entwickeln Grundlagen für noch genauere Atomuhren.

Der Fluss der Zeit kann mit Hilfe von Atomuhren sehr genau gemessen werden. Doch für viele Anwendungen und Grundlagenexperimente suchen Wissenschaftler nach immer neuen Möglichkeiten, atomare Schwingungsfrequenzen noch präziser zu bestimmen. Experimentalphysiker um Dr. Christian Roos haben nun ein Experiment durchgeführt, in dem quantenmechanisch verschränkte Atome für genauere Zeitmessungen verwendet werden. Darüber berichten sie in der aktuellen Ausgabe der Zeitschrift NATURE.

Die Innsbrucker Experimentalphysiker um Univ.-Prof. Dr. Rainer Blatt arbeiten seit Jahren sehr erfolgreich an den Grundlagen eines zukünftigen Quantencomputers. Erst im Vorjahr gelang den Forschern die Erzeugung des weltweit ersten ‚Quantenbytes’. Diese Erkenntnisse werden nicht nur die Zukunft der Informationsverarbeitung revolutionieren, der Einsatz von Quantenlogik verspricht auch Anwendungen für den Bau neuer Atomuhren. Schon jetzt wird die Zeit in Atomuhren über die Schwingungsfrequenz von einzelnen Atomen bestimmt. Die Genauigkeit dieser Uhren ist durch äußere Störungseinflüsse wie elektrische Felder begrenzt. Die Forscher um Christian Roos und Rainer Blatt haben nun ein System aus zwei verschränkten Kalzium-Ionen (40Ca+) entwickelt, das die Störanfälligkeit einzelner Atome umgeht. Sie nutzten dabei ihre Erfahrungen aus der Entwicklung von Quantencomputern. „In Systemen aus zwei oder mehr verschränkten Teilchen lassen sich Klassen von Zuständen finden, die unempfindlich gegen bestimmte Arten von Störungen sind“, erklärt Dr. Roos. „Diese so genannten dekohärenzfreien Unterräume sind wichtig für den Bau von Quantencomputern, müssen dort doch die empfindlichen Quantenzustände vor schädlichen Einflüssen aus der Umgebung geschützt werden. Diese dekohärenzfreien Sphären nutzen wir nun auch für unsere Messungen der Zeit.“

Verschränkung erlaubt noch exaktere Messung

... mehr zu:
»Atom »Atomuhr »Quantenlogik

„In unserem Experiment zeigen wir, dass quantenmechanische Zustände, die für die Messung der Zeit interessant sind, sehr stabil sein können“, erklärt Dr. Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI) in Innsbruck. Der Wissenschaftler misst die Zeit noch nicht direkt, er verwendet diese Zustände zur Messung einer atomaren Eigenschaft, des so genannten elektrischen Quadrupolmoments in einem Kalziumion. Für Atomuhren ist diese elektrische Größe sehr wichtig, denn sie bestimmt, wie stark äußere, elektrische Felder die Zeitmessung stören können. Deshalb sind in den letzten Jahren die Quadrupolmomente für eine Reihe von Atomen bestimmt worden. „Unsere Messung ist fast um den Faktor 10 genauer als alle bisherigen Messungen“, erklärt Roos, „und dies obwohl das störende Rauschen bei den verwendeten Kalziumionen viel stärker ist.“ In naher Zukunft wollen die Innsbrucker Physiker das Verfahren für eine genauere Bestimmung der Schwingungsfrequenz im Kalziumion verwenden, um damit eine verbesserte Zeitmessung zu erreichen.

Durchgeführt wurde dieses Experiment am Institut für Experimentalphysik der Universität Innsbruck. Unterstützt wurden die Wissenschaftler dabei vom Österreichischen Wissenschaftsfonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Union.

Dr. Christian Roos | IQOQI
Weitere Informationen:
http://www.quantumoptics.at
http://www.oeaw.ac.at

Weitere Berichte zu: Atom Atomuhr Quantenlogik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten