Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtung von Quantenzuständen im Gravitationsfeld der Erde gelungen

16.01.2002


Internationales Forschungsteam aus Frankreich, Russland und der Universität Heidelberg stellt am 17. Januar 2002 neue Ergebnisse seiner Experimente in "Nature" vor


Die Beobachtung von Quantenzuständen im Gravitationsfeld der Erde ist einem internationalen Forschungsteam aus Frankreich, Russland und der Universität Heidelberg gelungen. Dabei werden ultrakalte Neutronen auf einem horizontalen Neutronenspiegel unter dem Einfluss des Schwerefeldes der Erde mehrfach reflektiert. Aufgrund der Quantennatur des Neutrons sind nur diskrete Energieniveaus erlaubt. Diese Energieniveaus finden sich als Stufen in den Messdaten wieder, und Quantenphänomene können als Abweichung von der klassischen Erwartung sichtbar gemacht werden. Ergebnisse der Experimente werden am 17. Januar 2002 in "Nature" veröffentlicht unter dem Titel "Quantum states of the neutron in the gravitational field" von den Autoren V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov, H. Abele, S. Baeßler, F. J. Rueß, T. Stöferle, A. Westphal, A. M. Gagarsky, G. A. Petrov, A. V. Strelkov .

Die Gravitation ist wahrscheinlich die alltäglichste Kraft, die wir kennen. Das hier beschriebene Experiment ist vom Prinzip her ein Fallexperiment, wie es erstmals von Galilei durchgeführt wurde. Der Unterschied liegt in der Wahl des Fallobjekts. Heute ist das Objekt der Wahl ein äußerst energiearmes Neutron, die Fallhöhe beträgt einige Mikrometer und zur Beschreibung der Ergebnisse ist die Quantenmechanik notwendig.


Unter den bisher untersuchten Quantenphänomenen haben die meisten als Ursache elektromagnetische Kräfte, wie sie beispielsweise in der chemischen Bindung zu Tage treten. Die aktuellen Untersuchungen sind nun in einen neuen Energiebereich vorgestoßen. Aus physikalischer Sicht spielt die Gravitation nämlich eine Sonderrolle, da sie viele Zehnerpotenzen schwächer ist als alle anderen fundamentalen Kräfte der Natur.

Die Experimente wurden von einem internationalen Team aus dem Physikalischen Institut der Universität Heidelberg (H. Abele, S. Baeßler, N. Haverkamp, F. Rueß, T. Stöferle, A. Westphal), dem Institut Laue-Langevin (ILL) in Grenoble (V. Nesvizhevsky, H. Börner, A. Petukhov) und den Kernphysikinstituten St. Petersburg (A. Gagarsky, G. Petrov) und Dubna (A. Strelkov) in Russland durchgeführt. Die europäische Neutronenquelle am ILL stellt Neutronen für das durchgeführte Experiment zur Verfügung: Die im Kernspaltprozess erzeugten Neutronen sind ursprünglich alle sehr schnell, das heißt "heiß" (mehr als zehn Milliarden Grad). Für das Experiment braucht man aber äußerst langsame, das heißt "ultrakalte" Neutronen, die bis herab auf ein Tausendstel Grad über dem absoluten Temperaturnullpunkt gekühlt wurden. Diese Neutronen sind so energiearm, dass sie im Gegensatz zu schnelleren Neutronen an präzise polierten Spiegeloberflächen unter allen Auftreffwinkeln wie Licht an einem Spiegel reflektiert werden. Diese Neutronen werden nun vom Ausgang der Neutronenquelle für ultrakalte Neutronen über diesen Spiegel im Gravitationsfeld der Erde zu einem Neutrondetektor geführt.

Falls die Neutronen genügend Energie haben - für Hüpfhöhen oberhalb 50 Mikrometer über dem Spiegel -, so kann nicht zwischen klassischer Beschreibung und Quantenmechanik unterschieden werden und die Messdaten folgen der klassischen Erwartung. Werden die Hüpfhöhen von oben durch einen Neutronenabsorber beschränkt, dann macht sich für die entsprechenden kleinen Neutronenergien das Quantenregime bemerkbar. Im Unterschied zu Licht zeigen Neutronen nun Eigenschaften, wie sie nur durch die Gravitation im Zusammenspiel mit der Quantenmechanik hervorgerufen werden können: Ist der gewählte Energiebereich der Neutronen zu gering, so können keine Neutronen transmittiert werden. Licht jedoch, das nicht der Erdanziehung unterworfen ist, wird ungestört transmittiert.

Die Beobachtungen von Reflektionen von Atomen an magnetischen Spiegeln gelangen zum ersten Mal an der Yale University 1994 unter Mitarbeit von Hartmut Abele. Die Idee zu diesem Experiment reicht bis zu dieser Zeit zurück. Trotz der Erfolge mit Atomspiegeln war es einfacher, dieses Experiment mit Spiegeln für Neutronen aufgrund der ungleich besseren Reflexionseigenschaften für Neutronen herzustellen.

Das Experiment wurde gefördert vom Bundesforschungsministerium unter der Kontrakt-Nummer 06HD953 und von INTAS (International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union) unter Referenz 99-00705.

Rückfragen bitte an:
Priv.-Doz. Dr. Hartmut Abele
Physikalisches Institut der Universität Heidelberg
Philosophenweg 12, 69120 Heidelberg
Tel. 06221 549214, Fax 475733
abele@physi.uni-heidelberg.de

allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw

Weitere Berichte zu: Gravitationsfeld Quantenmechanik Quantenzustände Russland

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten