Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorübergehendes Chaos: Paradigmenwechsel in Turbulenzforschung

07.09.2006
Nature-Publikation von internationaler Forschergruppe belegt "transientes Chaos": Turbulente Strömungen in Rohren zerfallen wieder - Team um Marburger Physiker erwartet weit reichende Konsequenzen für das Verständnis turbulenter Zustände

Noch geht die physikalische Fachwelt davon aus, dass turbulente Rohrströmungen mit den Mitteln der statistischen Mechanik erfassbar sind und als dauerhafter Zustand gelten können. Nun aber hat eine internationale Forschergruppe um den theoretischen Physiker Professor Dr. Bruno Eckhardt von der Philipps-Universität Marburg in der Publikation "Finite lifetime of turbulence in shear flows", die im renommierten Fachjournal Nature erscheint (Nature, 7. September 2006; 442 (7107)), neue Ergebnisse veröffentlicht. Mit ihrer "verblüffenden Entdeckung" (Eckhardt) widersprechen sie einem zentralen und für gut belegt gehaltenen Paradigma der Turbulenzforschung: Turbulente Strömungen in Röhren, so der Kern der Aussage, gehen entgegen bisheriger Ansicht von selbst wieder in eine gleichförmige, "laminare" Strömung über. Mit einem Fachbegriff ausgedrückt: Das chaotische Strömungsverhalten in Röhren ist transient, also vorübergehend. Physiker, angewandte Mathematiker und selbst Astronomen, die über die Entstehung von Galaxien forschen, dürften nun ihre theoretischen Modelle überdenken müssen.

Gemeinsam mit Dr. Björn Hof von der britischen University of Manchester, Professor Dr. Jerry Westerweel von der niederländischen Delft University of Technology und Dipl.-Phys. Tobias M. Schneider von der Philipps-Universität führt Eckhardt in Nature überzeugende theoretische wie auch experimentelle Belege für seine Hypothese an. "Unsere Ergebnisse", so der Leibnizpreisträger des Jahres 2002, "haben weit reichende Konsequenzen für unser Verständnis der Natur des turbulenten Zustands und für die Beeinflussung turbulenter Strömungen."

Turbulenz tritt gemeinhin bei sehr hohen Strömungsgeschwindigkeiten auf, wie sie etwa in der Luft um ein fahrendes Auto oder ein Flugzeug oder eben in einem flüssigkeitsdurchströmten Rohr bei ausreichend hohem Druck vorkommen. "Trotz der Allgegenwart des Problems ringt man aber weiter um eine zuverlässige Beschreibung", sagt Eckhardt. Grund dafür sei, dass sich turbulente Strömungsfelder nicht analytisch fassen lassen, sondern dass man für ihre Beschreibung auf Experimente und numerische Verfahren angewiesen ist.

Verstärkt noch durch Ergebnisse aus der Chaosforschung habe sich in den letzten Jahrzehnten die Vorstellung durchgesetzt, dass eine turbulente Strömung als eigenständiger Zustand aufzufassen sei, in dem ein Fließgleichgewicht herrsche. Denn einerseits erzeugen die in der Flüssigkeit aneinander reibenden Flüssigkeitsschichten Wärme. Dabei geht der Turbulenz Energie verloren, sodass die Strömung von selbst wieder zur Rückkehr in den laminaren Zustand tendieren sollte. Gleichzeitig aber wird der Strömung durch den Druckunterschied zwischen Anfang und Ende des Rohrs auch Energie zugeführt, sodass die Turbulenz schließlich doch - und zwar auf Dauer - erhalten bleibt. Genau dieser Vorstellung, dass der Druckunterschied den turbulenten Zustand auf Dauer aufrecht erhält, widersprechen Eckhardt und seine Kollegen nun.

Die experimentelle Überprüfung ihrer Hypothese stellte allerdings besondere Anforderungen. "Eine turbulente Strömung durch einen Gartenschlauch, der einmal um den Äquator gewickelt ist", so schätzen die Wissenschaftler ab, "müsste durchschnittlich fünf Jahre lang fließen, bis man beobachten könnte, dass die Strömung wieder zerfällt." Zwar nicht anhand eines Gartenschlauchs, sondern mittels eines dreißig Meter langen Kupferrohrs im Keller des Physikgebäudes in Manchester sowie mithilfe numerischer Simulationen auf dem neuen MARC-Hochleistungsrechner der Philipps-Universität belegten die Forscher, dass die am Beginn des Rohrs angeregte Turbulenz schlussendlich wieder zerfällt.

"Allerdings steigt ihre Lebensdauer in Abhängigkeit von verschiedenen Parametern exponentiell sehr stark an", so Eckhardt. Für ein beispielhaftes städtisches Abwasserrohr von sechzig Zentimetern Durchmesser wurde auf Basis der neuen Ergebnisse sogar eine Abklingzeit von 10 hoch 3000 Jahren errechnet - verglichen damit ist nicht einmal das Alter unseres Universums, runde 14 Milliarden Jahre, eine nennenswerte Zahl. Diese Umstände dürften zumindest zum Teil erklären, warum man bislang von einer dauerhaften Turbulenz ausging. "Unsere Beobachtungen zeigen aber darüber hinaus", so Eckhardt, "dass das Netzwerk von Strömungszuständen komplizierter und komplexer ist als bisher angenommen und eine andere Beschreibungs- und Betrachtungsweise erfordert."

Die Ergebnisse der internationalen Forschergruppe sind von Bedeutung für die mathematische Beschreibung turbulenter Strömungen, für deren (praktische) Beeinflussbarkeit und für eine Reihe von Anwendungen etwa im Bereich der Astrophysik. Die Möglichkeit, dass die Strömung wieder zerfällt, bedeutet unter anderem, dass sich eine turbulente Rohrströmung mit minimalem Energieaufwand wieder in einen laminaren Zustand überführen lassen sollte. Astrophysiker dürften sich für Eckhardts Ergebnisse insbesondere im Zusammenhang mit dem Phänomen der Akkretion interessieren. Dabei ziehen kosmische Objekte wie Sterne oder Schwarze Löcher aufgrund ihrer Schwerkraft Materie aus der Umgebung an. Im Zuge der entstehenden turbulenten Materieströme bilden sich dann Planetensysteme oder ganze Galaxien.

"Unsere Ergebnisse sind allerdings so verblüffend", sagt Eckhardt, "dass sie sicherlich kritische Überprüfungen herausfordern werden." Diese werden sich voraussichtlich nicht nur auf Rohrströmungen, sondern auch auf verwandte Strömungssituationen beziehen. Doch Eckhardt, Hof, Westerweel und Schneider sind sich sicher: "Mit dem transienten Chaos im Rohr haben wir für einen weiteren Typ nichtlinearer Dynamik eine Realisierung in einer Strömung gefunden."

Angesichts ihrer weit reichenden Bedeutung wird die Arbeit des internationalen Forscherteams auch in der "news & views"-Rubrik des Nature-Magazins unter dem Titel "Lost in transience" kommentiert.

Kontakt
Professor Dr. Bruno Eckhardt: Philipps-Universität Marburg, Fachbereich Physik,
Renthof 5, 35032 Marburg
Tel.: (06421) 28 21316, E-Mail: bruno.eckhardt@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.physik.uni-marburg.de/kosy/Eckhardt

Weitere Berichte zu: Rohrströmung Turbulenzforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie