Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorübergehendes Chaos: Paradigmenwechsel in Turbulenzforschung

07.09.2006
Nature-Publikation von internationaler Forschergruppe belegt "transientes Chaos": Turbulente Strömungen in Rohren zerfallen wieder - Team um Marburger Physiker erwartet weit reichende Konsequenzen für das Verständnis turbulenter Zustände

Noch geht die physikalische Fachwelt davon aus, dass turbulente Rohrströmungen mit den Mitteln der statistischen Mechanik erfassbar sind und als dauerhafter Zustand gelten können. Nun aber hat eine internationale Forschergruppe um den theoretischen Physiker Professor Dr. Bruno Eckhardt von der Philipps-Universität Marburg in der Publikation "Finite lifetime of turbulence in shear flows", die im renommierten Fachjournal Nature erscheint (Nature, 7. September 2006; 442 (7107)), neue Ergebnisse veröffentlicht. Mit ihrer "verblüffenden Entdeckung" (Eckhardt) widersprechen sie einem zentralen und für gut belegt gehaltenen Paradigma der Turbulenzforschung: Turbulente Strömungen in Röhren, so der Kern der Aussage, gehen entgegen bisheriger Ansicht von selbst wieder in eine gleichförmige, "laminare" Strömung über. Mit einem Fachbegriff ausgedrückt: Das chaotische Strömungsverhalten in Röhren ist transient, also vorübergehend. Physiker, angewandte Mathematiker und selbst Astronomen, die über die Entstehung von Galaxien forschen, dürften nun ihre theoretischen Modelle überdenken müssen.

Gemeinsam mit Dr. Björn Hof von der britischen University of Manchester, Professor Dr. Jerry Westerweel von der niederländischen Delft University of Technology und Dipl.-Phys. Tobias M. Schneider von der Philipps-Universität führt Eckhardt in Nature überzeugende theoretische wie auch experimentelle Belege für seine Hypothese an. "Unsere Ergebnisse", so der Leibnizpreisträger des Jahres 2002, "haben weit reichende Konsequenzen für unser Verständnis der Natur des turbulenten Zustands und für die Beeinflussung turbulenter Strömungen."

Turbulenz tritt gemeinhin bei sehr hohen Strömungsgeschwindigkeiten auf, wie sie etwa in der Luft um ein fahrendes Auto oder ein Flugzeug oder eben in einem flüssigkeitsdurchströmten Rohr bei ausreichend hohem Druck vorkommen. "Trotz der Allgegenwart des Problems ringt man aber weiter um eine zuverlässige Beschreibung", sagt Eckhardt. Grund dafür sei, dass sich turbulente Strömungsfelder nicht analytisch fassen lassen, sondern dass man für ihre Beschreibung auf Experimente und numerische Verfahren angewiesen ist.

Verstärkt noch durch Ergebnisse aus der Chaosforschung habe sich in den letzten Jahrzehnten die Vorstellung durchgesetzt, dass eine turbulente Strömung als eigenständiger Zustand aufzufassen sei, in dem ein Fließgleichgewicht herrsche. Denn einerseits erzeugen die in der Flüssigkeit aneinander reibenden Flüssigkeitsschichten Wärme. Dabei geht der Turbulenz Energie verloren, sodass die Strömung von selbst wieder zur Rückkehr in den laminaren Zustand tendieren sollte. Gleichzeitig aber wird der Strömung durch den Druckunterschied zwischen Anfang und Ende des Rohrs auch Energie zugeführt, sodass die Turbulenz schließlich doch - und zwar auf Dauer - erhalten bleibt. Genau dieser Vorstellung, dass der Druckunterschied den turbulenten Zustand auf Dauer aufrecht erhält, widersprechen Eckhardt und seine Kollegen nun.

Die experimentelle Überprüfung ihrer Hypothese stellte allerdings besondere Anforderungen. "Eine turbulente Strömung durch einen Gartenschlauch, der einmal um den Äquator gewickelt ist", so schätzen die Wissenschaftler ab, "müsste durchschnittlich fünf Jahre lang fließen, bis man beobachten könnte, dass die Strömung wieder zerfällt." Zwar nicht anhand eines Gartenschlauchs, sondern mittels eines dreißig Meter langen Kupferrohrs im Keller des Physikgebäudes in Manchester sowie mithilfe numerischer Simulationen auf dem neuen MARC-Hochleistungsrechner der Philipps-Universität belegten die Forscher, dass die am Beginn des Rohrs angeregte Turbulenz schlussendlich wieder zerfällt.

"Allerdings steigt ihre Lebensdauer in Abhängigkeit von verschiedenen Parametern exponentiell sehr stark an", so Eckhardt. Für ein beispielhaftes städtisches Abwasserrohr von sechzig Zentimetern Durchmesser wurde auf Basis der neuen Ergebnisse sogar eine Abklingzeit von 10 hoch 3000 Jahren errechnet - verglichen damit ist nicht einmal das Alter unseres Universums, runde 14 Milliarden Jahre, eine nennenswerte Zahl. Diese Umstände dürften zumindest zum Teil erklären, warum man bislang von einer dauerhaften Turbulenz ausging. "Unsere Beobachtungen zeigen aber darüber hinaus", so Eckhardt, "dass das Netzwerk von Strömungszuständen komplizierter und komplexer ist als bisher angenommen und eine andere Beschreibungs- und Betrachtungsweise erfordert."

Die Ergebnisse der internationalen Forschergruppe sind von Bedeutung für die mathematische Beschreibung turbulenter Strömungen, für deren (praktische) Beeinflussbarkeit und für eine Reihe von Anwendungen etwa im Bereich der Astrophysik. Die Möglichkeit, dass die Strömung wieder zerfällt, bedeutet unter anderem, dass sich eine turbulente Rohrströmung mit minimalem Energieaufwand wieder in einen laminaren Zustand überführen lassen sollte. Astrophysiker dürften sich für Eckhardts Ergebnisse insbesondere im Zusammenhang mit dem Phänomen der Akkretion interessieren. Dabei ziehen kosmische Objekte wie Sterne oder Schwarze Löcher aufgrund ihrer Schwerkraft Materie aus der Umgebung an. Im Zuge der entstehenden turbulenten Materieströme bilden sich dann Planetensysteme oder ganze Galaxien.

"Unsere Ergebnisse sind allerdings so verblüffend", sagt Eckhardt, "dass sie sicherlich kritische Überprüfungen herausfordern werden." Diese werden sich voraussichtlich nicht nur auf Rohrströmungen, sondern auch auf verwandte Strömungssituationen beziehen. Doch Eckhardt, Hof, Westerweel und Schneider sind sich sicher: "Mit dem transienten Chaos im Rohr haben wir für einen weiteren Typ nichtlinearer Dynamik eine Realisierung in einer Strömung gefunden."

Angesichts ihrer weit reichenden Bedeutung wird die Arbeit des internationalen Forscherteams auch in der "news & views"-Rubrik des Nature-Magazins unter dem Titel "Lost in transience" kommentiert.

Kontakt
Professor Dr. Bruno Eckhardt: Philipps-Universität Marburg, Fachbereich Physik,
Renthof 5, 35032 Marburg
Tel.: (06421) 28 21316, E-Mail: bruno.eckhardt@physik.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.physik.uni-marburg.de/kosy/Eckhardt

Weitere Berichte zu: Rohrströmung Turbulenzforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie