Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supernova blitzt im Röntgenlicht

31.08.2006
Auch Neutronensterne können bei einer Supernova Röntgenblitze ins All schleudern.

Eine internationale Forschergruppe, an der auch Wissenschaftler des Max-Planck-Instituts für Astrophysik in Garching beteiligt waren, hat erstmals einen schwachen Gammablitz beobachtet, der bei der Supernova eines relativ massearmen Sterns aufflackerte. Bei dieser Explosion kollabierte der Kern zu einem Neutronenstern. Bislang hatten Astronomen angenommen, dass solche Gammablitze nur in Verbindung mit Supernovae auftreten, bei denen besonders massereiche Sterne zu einem Schwarzen Loch zusammenfallen. (Nature, 31. August)


Das linke Bild zeigt die Himmelsgegend der Supernova SN 2006aj vor der Explosion. Die Lichtquelle innerhalb des Kreises ist die Galaxie, in welcher der Stern explodierte. Sie ist rund 430 Millionen Lichtjahre von der Erde entfernt. Das rechte Bild ist eine Aufnahme der Supernova (Pfeil) mit dem Very Large Telescope der Europäischen Südsternwarte. Beide Bilder haben einen Durchmesser von etwa einer Bogenminute. Bild: The European Southern Observatory

Wenn Sterne sterben, kollabiert ihr Kern innerhalb von Sekundenbruchteilen. Die Folge: Eine Supernova, bei welcher die Hülle des Sterns in einer gewaltigen Explosion auseinandergesprengt und ins All geschleudert wird. Die Kernreaktionen bei der Explosion und die Energie der Explosionswelle, die das Sterngas stark erhitzt, lassen zerberstende Sterne hell aufleuchten - mehrere Tage strahlt eine Supernova dann so hell wie eine ganze Galaxie.

Doch Supernova ist nicht gleich Supernova: Während der Kern besonders massereicher Sterne vermutlich zu einem Schwarzen Loch kollabiert, fallen leichtere Sterne zu einem dichten Neutronenstern zusammen. Diese Objekte vereinigen bis zu drei Mal mehr Masse auf sich als die Sonne - bei einem Durchmesser von im Schnitt 20 Kilometern.

Als der Swift-Satellit der NASA am 18. Februar 2006 den Röntgenblitz XRF 060218 registrierte, identifizierte die internationale Gruppe von Astronomen eine Supernova als Quelle. Das war das erste Mal, dass Astronomen einen Röntgenblitz aufzeichneten, der eine Supernova begleitet hat. Zuvor gelang Astrophysikern dies nur bei Gammastrahlenblitzen - 10 bis 100 Sekunden andauernden Ausbrüchen hochenergetischer Gammastrahlung -, die von Sternenexplosionen stammten. Diese haben sie allerdings nur gemessen, wenn ein extrem schwerer Stern, nämlich etwa von 40-facher Sonnenmasse, zerbarst und dabei besonders viel Energie freisetzte. Im Vergleich zu Gammastrahlen haben Röntgenstrahlen eine größere Wellenlänge und weniger Energie. Wegen ihrer geringeren Helligkeit sind Röntgenblitze wesentlich schwieriger zu lokalisieren als Gammastrahlenblitze.

Die Supernova, die den Röntgenblitz XRF 060218 freisetzte, ereignete sich nur 430 Millionen Lichtjahre von der Erde entfernt - nah genug, damit die Astronomen die neu entdeckte Energiequelle auch mit den Achtmeterspiegeln des Very Large Telescope der Europäischen Südsternwarte in Chile beobachten konnten. Dort zeichneten die Wissenschaftler des Max-Planck-Instituts für Astrophysik, des Italienischen Nationalen Instituts für Astrophysik und der Universitäten Berkeley und Tokio in den folgenden Tagen Energiespektren auf, die sie eindeutig einer Supernova zuordneten.

Allerdings erreichte diese Sternenexplosion, welche die Bezeichnung SN 2006aj erhielt, nicht ganz die Helligkeit von Supernovae, die bekanntermaßen Gammablitze erzeugen. Zudem produzierte SN 2006aj auch ein Spektrum, das sich von dem der bekannten Gammaquellen unterscheidet. Um die besonderen Eigenschaften von SN 2006aj besser zu verstehen, entwickelten die Wissenschaftler des Max-Planck-Instituts für Astrophysik in Garching theoretische Modelle, wie das Licht abgestrahlt wird und wie es sich über das Energiespektrum verteilt. Ihr Ergebnis: "Sowohl Explosionsenergie als auch die Menge der ins All geschleuderten Materie lag bei der beobachteten Supernova zwischen den Werten von Supernovae, die Gammablitze erzeugen, und denen, die das nicht tun", sagt Dr. Paolo Mazzali vom Max-Planck-Institut für Astrophysik.

Offensichtlich gilt: Je massereicher ein Stern, desto mehr Energie entsteht bei seiner Explosion - und umso energiereicher sind seine Blitze. "Aus der Menge von ausgeschleudertem Gas schließen wir, dass dies die Supernova eines Sterns war, der nur rund die zwanzigfache Sonnenmasse hatte." Der Kern des zerborstenen Sterns ist demnach zu einem Neutronenstern implodiert, der im Röntgenlicht aufblitzte. "Beim Kollaps weniger massereicher Sterne könnte eine Phase magnetischer Aktivität des entstehenden Neutronensterns für den Röntgenblitz verantwortlich sein", sagt Mazzali. Warum manche Sterne bei ihrer Explosion Röntgenblitze aussenden und andere nicht, bleibt allerdings weiter unklar.

"Wir vermuten zwar bereits seit längerem, dass Röntgenblitze auch von Neutronensternen stammen", sagt Elena Pian vom Italienischen Nationalen Institut für Astrophysik. "Röntgenblitze sind aber deutlich lichtschwächer und daher schwerer zu lokalisieren. Deshalb sind sie noch nicht so gut untersucht wie die Quellen von Gammablitzen." Womöglich erzeugen bei Supernova-Explosionen also weitaus mehr Sternenarten Gammablitze als bislang vermutet. "Weniger massereiche Sterne sind weitaus zahlreicher als schwerere Sterne", sagt Elena Pian. "Ereignisse dieser Art könnten im All also tatsächlich recht häufig sein."

Originalveröffentlichung:

Paolo Mazzali, Jinsong Deng, Ken’ichi Nomoto, Daniel N. Sauer, Elena Pian, Nozomu Tominaga, Masomi Tanaka, Keiichi Maeda, Alexei V. Filippenko
A neutron-star-driven X-ray flash associated with supernova SN 2006aj
Nature, Vol. 442, Band 7106 (31. August 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Astrophysik Gammablitz Neutronenstern Röntgenblitz Supernova

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie