Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Röntgenexperimente bei ultratiefen Temperaturen

14.01.2002


Abb. 1: Ein Buckyball-Fußballmolekül aus 60 Kohlenstoffatomen. In der Äquatorregion des Moleküls sind Elektronendichtekonzentrationen auf den chemischen Bindungen dargestellt


Abb. 2: Negative Ladungsregion (in rot) in einem aktiven Penicillinmolekül


Neues Großgerät zur Erforschung der elektronischen Struktur chemischer Verbindungen.

Die Deutsche Forschungsgemeinschaft (DFG) hat der Arbeitsgruppe des Kristallographen Prof. Dr. Peter Luger vom Institut für Chemie der Freien Universität Berlin (FU) eine Förderung von ca. einer halben Mio. DM für den Aufbau eines neuartigen Messplatzes für Röntgenexperimente zur Elektronendichtebestimmung bewilligt. Kernstück der Förderung ist die Beschaffung eines neuen hochempfindlichen Detektors, mit dem Röntgenstrahlen flächenhaft gemessen werden können. Damit wird die Fortentwicklung einer Methode ermöglicht, die zwar auf mehr als 100 Jahre alten Grundlagen beruht, aber erst in den letzten Jahren, u.a. durch die Arbeiten der Gruppe um Peter Luger, eine rasante Entwicklung genommen hat.

Als vor genau 100 Jahren Wilhelm Conrad Röntgen den ersten Physik-Nobelpreis für die bahnbrechende Entdeckung der später nach ihm benannten Röntgenstrahlen erhielt, wurde eine Revolution in der medizinischen Diagnostik gewürdigt. Zum ersten Mal konnte man in das Innere des menschlichen Körpers "sehen". Die Röntgenstrahlen waren nur wenig später, im Frühjahr 1912, die Basis für eine weitere fundamentale Entdeckung, mit der man jetzt auch in das Innere chemischer Strukturen "sehen" konnte. Die von Max von Laue und Mitarbeitern entdeckte Röntgenbeugung an Kristallen erlaubte es, die dreidimensionale Atomanordnung chemischer Verbindungen sichtbar zu machen. Diese Methode, für die Max von Laue ebenfalls mit dem Nobelpreis für Physik schon zwei Jahre später belohnt wurde, hat in vielen Disziplinen vertiefte Einblicke in atomare Strukturen ermöglicht. Das Strukturmodell der Doppelhelix für die DNS von James D. Watson und Francis Crick in den 50er Jahren war ein Meilenstein. Viele Erkenntnisse der modernen Biowissenschaften wären ohne Anwendung der Röntgenbeugung nicht denkbar.

Grundsätzlich erlaubt die Röntgenbeugung sogar, noch feinere Details sichtbar zu machen, so dass sich die Frage stellt, ob man nicht nur Atome, sondern auch die den Atomkern umhüllenden viel kleineren Teilchen, die Elektronen, sichtbar machen kann. Dies ist deshalb von besonderer Wichtigkeit, weil Elektronen nicht nur für das Eingehen chemischer Bindungen, sondern auch für viele elektrische Ladungseigenschaften eines Moleküls verantwortlich sind. Leider lehrt die Quantentheorie, dass man den exakten Aufenthaltsort eines Elektrons nicht direkt bestimmen, Elektronen also nicht sichtbar machen kann. Es lässt sich nur eine Wahrscheinlichkeit dafür angeben, Elektronen in einem bestimmten Raumbereich zu finden. Diese so genannte Elektronendichte ist nun durch das Röntgenbeugungsexperiment an Kristallen zugänglich.

Obwohl die experimentelle Elektronendichtebestimmung seit den 60er Jahren gelegentlich angewendet wurde, galt die Methode als so schwierig, dass sich ihr nur hartnäckige Sonderlinge mit Engelsgeduld und Leidensfähigkeit stellten. Ein "normales" Röntgenbeugungsexperiment an einer mittelgroßen Verbindung, etwa einem Zuckerkristall, lässt die Atome bereits nach ein- bis zweitausend Messwerten sichtbar werden, was höchstens einige Tage dauert. Dagegen würde sich die Elektronendichteverteilung erst nach einigen zehn- bis hunderttausend Messwerten zeigen, was wochen- bis monatelanges Experimentieren erforderte. Schlimmer noch, weil die Atome selbst im Kristall noch temperaturabhängige Schwingungen ausführen, die die zu messenden Effekte zum Teil verwischen, muss das Beugungsexperiment bei tiefstmöglichen Temperaturen ausgeführt werden, um die Atombewegungen soweit als möglich "einzufrieren". Tiefe Temperatur heißt in diesem Fall etwa -150°C. Ein Experiment monatelang bei dieser Extrembedingung am Laufen zu halten, stellt schon eine besondere Herausforderung dar.

Dieser Herausforderung hat sich die Gruppe um Luger in zweifacher Hinsicht gestellt. Anfang der 90er Jahre haben sie einen Messplatz entwickelt, an dem die Temperatur noch einmal um ca. 100° gesenkt werden konnte, so dass nunmehr Röntgenbeugungsexperimente bei ultratiefen Temperaturen bis -250°C möglich wurden, also nur ca. 20° oberhalb des absoluten Nullpunktes. Der entscheidende Durchbruch aber gelang vor knapp fünf Jahren, als Flächendetektoren in der Röntgenbeugung zum Einsatz kamen. Mit Hilfe eines CCD-Chips, wie er auch in Videokameras verwendet wird, können nahezu gleichzeitig Hunderte von Messwerten detektiert werden. Damit ließen sich monatelange Messzeiten auf einen oder wenige Tage reduzieren. Zunächst wurde bezweifelt, dass die Flächendetektion hinreichend genau ist. Lugers Gruppe konnte aber in einem Experiment im Frühjahr 1997 an einem Kristall der Aminosäure Prolin mehr als 30.000 Messwerte in weniger als 24 Stunden aufnehmen, leider nur bei der relativ "hohen" Temperatur von -170°C. Dessenungeachtet war das Experiment hinreichend genau, um feine Details der Elektronendichteverteilung sichtbar zu machen. Die seinerzeit in "Science" publizierten Ergebnisse erregten in Fachkreisen beachtliches Aufsehen und läuteten eine Renaissance dieser Methode ein, die nunmehr mit erträglichem Aufwand allgemein zugänglich wurde.

Allerdings würde erst die Kombination von Flächendetektion mit ultratiefer Temperatur den idealen Messplatz ergeben. Diese Chance erhält die Gruppe jetzt durch die großzügige Förderung der DFG. Sie kann einen neuen hochempfindlichen CCD-Flächendetektor beschaffen und mit ihrer Tiefsttemperaturanlage kombinieren, so dass sie in Zukunft ultraschnelle Röntgenexperimente bei ultratiefen Temperaturen ausführen können, nach Einschätzung von Prof. Luger der zur Zeit optimale Messplatz für ihre Experimente.

Weshalb dieser enorme Aufwand? Wie bereits erwähnt, können offene Fragen zur chemischen Bindung untersucht werden, die sich z.B. in hochgespannten käfigartigen Strukturen wie den neuen fußballförmigen "Buckyball"-Kohlenstoffverbindungen stellen (Abb. 1). Auch biologische Wechselwirkungen werden noch wenig verstanden und stellen z.B. in der Arzneimittelforschung eine extrem wichtige Fragestellung dar, weil die Kenntnis der elektronischen Struktur eines Arzneiwirkstoffes das Verständnis der Wirkstoff-Rezeptor-Erkennung wesentlich erleichtern würde. So wurde unlängst an einem aktiven und einem inaktiven Penicillinderivat, die sich chemisch kaum unterscheiden, ein Hinweis auf den Einfluss der Ladung auf die Wirksamkeit erhalten (Abb. 2).

Wegen der Schnelligkeit der Experimente spielt die Molekülgröße fast keine Rolle mehr. So rücken jetzt biologische Groß- und Makromoleküle ins Visier. Vitamin B12 mit fast 200 Atomen ist das nächste Ziel der Gruppe. Allerdings werden bei Problemen dieser Größenordnung die Rechnerkapazitäten knapp. Abhilfe kommt durch eine Kooperation mit der NASA, die das Projekt mit ihren Supercomputern unterstützt. Kooperation wird von den FU-Forschern ohnehin groß geschrieben. So werden schon lange Ideen und Gastwissenschaftler mit Instituten in Südafrika, den USA, Brasilien, Australien und seit Kurzem auch mit einer Theoretikergruppe in Singapur ausgetauscht

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Peter Luger, Institut für Chemie der Freien Universität Berlin, Takustr. 6, 14195 Berlin, Tel.: 030 / 838-53411, E-Mail: luger@chemie.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.chemie.fu-berlin.de/ag/luger/index.html

Weitere Berichte zu: Elektron Kristall Röntgenbeugung Röntgenexperimente

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau