Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Röntgenexperimente bei ultratiefen Temperaturen

14.01.2002


Abb. 1: Ein Buckyball-Fußballmolekül aus 60 Kohlenstoffatomen. In der Äquatorregion des Moleküls sind Elektronendichtekonzentrationen auf den chemischen Bindungen dargestellt


Abb. 2: Negative Ladungsregion (in rot) in einem aktiven Penicillinmolekül


Neues Großgerät zur Erforschung der elektronischen Struktur chemischer Verbindungen.

Die Deutsche Forschungsgemeinschaft (DFG) hat der Arbeitsgruppe des Kristallographen Prof. Dr. Peter Luger vom Institut für Chemie der Freien Universität Berlin (FU) eine Förderung von ca. einer halben Mio. DM für den Aufbau eines neuartigen Messplatzes für Röntgenexperimente zur Elektronendichtebestimmung bewilligt. Kernstück der Förderung ist die Beschaffung eines neuen hochempfindlichen Detektors, mit dem Röntgenstrahlen flächenhaft gemessen werden können. Damit wird die Fortentwicklung einer Methode ermöglicht, die zwar auf mehr als 100 Jahre alten Grundlagen beruht, aber erst in den letzten Jahren, u.a. durch die Arbeiten der Gruppe um Peter Luger, eine rasante Entwicklung genommen hat.

Als vor genau 100 Jahren Wilhelm Conrad Röntgen den ersten Physik-Nobelpreis für die bahnbrechende Entdeckung der später nach ihm benannten Röntgenstrahlen erhielt, wurde eine Revolution in der medizinischen Diagnostik gewürdigt. Zum ersten Mal konnte man in das Innere des menschlichen Körpers "sehen". Die Röntgenstrahlen waren nur wenig später, im Frühjahr 1912, die Basis für eine weitere fundamentale Entdeckung, mit der man jetzt auch in das Innere chemischer Strukturen "sehen" konnte. Die von Max von Laue und Mitarbeitern entdeckte Röntgenbeugung an Kristallen erlaubte es, die dreidimensionale Atomanordnung chemischer Verbindungen sichtbar zu machen. Diese Methode, für die Max von Laue ebenfalls mit dem Nobelpreis für Physik schon zwei Jahre später belohnt wurde, hat in vielen Disziplinen vertiefte Einblicke in atomare Strukturen ermöglicht. Das Strukturmodell der Doppelhelix für die DNS von James D. Watson und Francis Crick in den 50er Jahren war ein Meilenstein. Viele Erkenntnisse der modernen Biowissenschaften wären ohne Anwendung der Röntgenbeugung nicht denkbar.

Grundsätzlich erlaubt die Röntgenbeugung sogar, noch feinere Details sichtbar zu machen, so dass sich die Frage stellt, ob man nicht nur Atome, sondern auch die den Atomkern umhüllenden viel kleineren Teilchen, die Elektronen, sichtbar machen kann. Dies ist deshalb von besonderer Wichtigkeit, weil Elektronen nicht nur für das Eingehen chemischer Bindungen, sondern auch für viele elektrische Ladungseigenschaften eines Moleküls verantwortlich sind. Leider lehrt die Quantentheorie, dass man den exakten Aufenthaltsort eines Elektrons nicht direkt bestimmen, Elektronen also nicht sichtbar machen kann. Es lässt sich nur eine Wahrscheinlichkeit dafür angeben, Elektronen in einem bestimmten Raumbereich zu finden. Diese so genannte Elektronendichte ist nun durch das Röntgenbeugungsexperiment an Kristallen zugänglich.

Obwohl die experimentelle Elektronendichtebestimmung seit den 60er Jahren gelegentlich angewendet wurde, galt die Methode als so schwierig, dass sich ihr nur hartnäckige Sonderlinge mit Engelsgeduld und Leidensfähigkeit stellten. Ein "normales" Röntgenbeugungsexperiment an einer mittelgroßen Verbindung, etwa einem Zuckerkristall, lässt die Atome bereits nach ein- bis zweitausend Messwerten sichtbar werden, was höchstens einige Tage dauert. Dagegen würde sich die Elektronendichteverteilung erst nach einigen zehn- bis hunderttausend Messwerten zeigen, was wochen- bis monatelanges Experimentieren erforderte. Schlimmer noch, weil die Atome selbst im Kristall noch temperaturabhängige Schwingungen ausführen, die die zu messenden Effekte zum Teil verwischen, muss das Beugungsexperiment bei tiefstmöglichen Temperaturen ausgeführt werden, um die Atombewegungen soweit als möglich "einzufrieren". Tiefe Temperatur heißt in diesem Fall etwa -150°C. Ein Experiment monatelang bei dieser Extrembedingung am Laufen zu halten, stellt schon eine besondere Herausforderung dar.

Dieser Herausforderung hat sich die Gruppe um Luger in zweifacher Hinsicht gestellt. Anfang der 90er Jahre haben sie einen Messplatz entwickelt, an dem die Temperatur noch einmal um ca. 100° gesenkt werden konnte, so dass nunmehr Röntgenbeugungsexperimente bei ultratiefen Temperaturen bis -250°C möglich wurden, also nur ca. 20° oberhalb des absoluten Nullpunktes. Der entscheidende Durchbruch aber gelang vor knapp fünf Jahren, als Flächendetektoren in der Röntgenbeugung zum Einsatz kamen. Mit Hilfe eines CCD-Chips, wie er auch in Videokameras verwendet wird, können nahezu gleichzeitig Hunderte von Messwerten detektiert werden. Damit ließen sich monatelange Messzeiten auf einen oder wenige Tage reduzieren. Zunächst wurde bezweifelt, dass die Flächendetektion hinreichend genau ist. Lugers Gruppe konnte aber in einem Experiment im Frühjahr 1997 an einem Kristall der Aminosäure Prolin mehr als 30.000 Messwerte in weniger als 24 Stunden aufnehmen, leider nur bei der relativ "hohen" Temperatur von -170°C. Dessenungeachtet war das Experiment hinreichend genau, um feine Details der Elektronendichteverteilung sichtbar zu machen. Die seinerzeit in "Science" publizierten Ergebnisse erregten in Fachkreisen beachtliches Aufsehen und läuteten eine Renaissance dieser Methode ein, die nunmehr mit erträglichem Aufwand allgemein zugänglich wurde.

Allerdings würde erst die Kombination von Flächendetektion mit ultratiefer Temperatur den idealen Messplatz ergeben. Diese Chance erhält die Gruppe jetzt durch die großzügige Förderung der DFG. Sie kann einen neuen hochempfindlichen CCD-Flächendetektor beschaffen und mit ihrer Tiefsttemperaturanlage kombinieren, so dass sie in Zukunft ultraschnelle Röntgenexperimente bei ultratiefen Temperaturen ausführen können, nach Einschätzung von Prof. Luger der zur Zeit optimale Messplatz für ihre Experimente.

Weshalb dieser enorme Aufwand? Wie bereits erwähnt, können offene Fragen zur chemischen Bindung untersucht werden, die sich z.B. in hochgespannten käfigartigen Strukturen wie den neuen fußballförmigen "Buckyball"-Kohlenstoffverbindungen stellen (Abb. 1). Auch biologische Wechselwirkungen werden noch wenig verstanden und stellen z.B. in der Arzneimittelforschung eine extrem wichtige Fragestellung dar, weil die Kenntnis der elektronischen Struktur eines Arzneiwirkstoffes das Verständnis der Wirkstoff-Rezeptor-Erkennung wesentlich erleichtern würde. So wurde unlängst an einem aktiven und einem inaktiven Penicillinderivat, die sich chemisch kaum unterscheiden, ein Hinweis auf den Einfluss der Ladung auf die Wirksamkeit erhalten (Abb. 2).

Wegen der Schnelligkeit der Experimente spielt die Molekülgröße fast keine Rolle mehr. So rücken jetzt biologische Groß- und Makromoleküle ins Visier. Vitamin B12 mit fast 200 Atomen ist das nächste Ziel der Gruppe. Allerdings werden bei Problemen dieser Größenordnung die Rechnerkapazitäten knapp. Abhilfe kommt durch eine Kooperation mit der NASA, die das Projekt mit ihren Supercomputern unterstützt. Kooperation wird von den FU-Forschern ohnehin groß geschrieben. So werden schon lange Ideen und Gastwissenschaftler mit Instituten in Südafrika, den USA, Brasilien, Australien und seit Kurzem auch mit einer Theoretikergruppe in Singapur ausgetauscht

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Peter Luger, Institut für Chemie der Freien Universität Berlin, Takustr. 6, 14195 Berlin, Tel.: 030 / 838-53411, E-Mail: luger@chemie.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.chemie.fu-berlin.de/ag/luger/index.html

Weitere Berichte zu: Elektron Kristall Röntgenbeugung Röntgenexperimente

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften