Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plasmakristall im All

16.08.2006
Astronaut Thomas Reiter forscht für das Max-Planck-Institut für extraterrestrische Physik auf ISS an komplexen Plasmen

An Bord der internationalen Raumstation ISS wird der deutsche Astronaut Thomas Reiter zwischen dem 17. und 19. August Experimente für das Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching vornehmen. Mit dem Labor PK3-Plus untersucht Reiter stellvertretend für die Max-Planck-Wissenschaftler die Eigenschaften komplexer Plasmen. In diesem bislang wenig erforschten Materiezustand verleihen Mikropartikel einem Plasma, dem vierten und ungeordneten Aggregatzustand der Materie, eine Struktur. Ein Beispiel dafür sind Plasmakristalle, in denen sich einzelne Mikropartikel zu einem periodischen Gitter anordnen und daher besonders gut beobachten lassen. Darüber hinaus haben die Wissenschaftler ein Experiment vorbereitet, bei dem sie den kritischen Punkt eines komplexen Plasmas erreichen und untersuchen wollen. Die Garchinger Forscher kooperieren in diesem Projekt mit dem russischen Institute for High Energy Densities (IHED).


3-dimensionale Ansicht eines Plasmakristalls: In einem komplexen Plasma ordnen sich Mikropartikel unter bestimmten Bedingungen zu einem Plasmakristall an. Die Farbe der Partikel zeigt den Kristallgittertyp; blau bedeutet keine kristalline Struktur. Bild: MPI für extraterrestrische Physik

Auf der Erde sind alle Stoffe in drei Aggregatzuständen gebunden: fest, flüssig und gasförmig. Im Universum ist das anders. Die Sterne, das Polarlicht und die Gasnebel - mehr als 99 Prozent aller sichtbaren Materie im Weltraum befindet sich in einem weiteren, vierten Aggregatzustand: dem Plasma. Dieses Gas ist so heiß, dass es sogar die robustesten Bindungen auseinander reißt, die die Natur geschaffen hat: die Atome. Denn bei extrem hohen Temperaturen und Dichten prallen die einzelnen Atome mit so großen Geschwindigkeiten aufeinander, dass sie zerbrechen. Die Folge: ein Durcheinander aus positiv geladenen Atomrümpfen, den Ionen, und negativen Elektronen.

Mikropartikel verleihen diesem Teilchen-Chaos eine Struktur, indem sie die freien Elektronen und Ionen aufsammeln. Da Elektronen jedoch viel beweglicher sind als die schwereren Ionen, treffen sie wesentlich häufiger auf die Oberfläche der Mikropartikel. Die Teilchen laden sich elektrisch auf und beginnen miteinander zu wechselwirken. Und damit erreichen sie einen neuen Materiezustand: das komplexe Plasma. Wissenschaftler können den Zustand des komplexen Plasma dann gezielt ändern: in gasförmig, flüssig oder kristallin. In Plasmakristallen ordnen sich die Mikropartikel in regelmäßigen Abständen von einem Zehntel Millimeter zueinander an. Dies ermöglicht es den Forschern, die Partikel nun einzeln zu beobachten. Zum Beispiel dann, wenn sie ihren Aggregatzustand ändern - ein Vorgang, der bis heute noch nicht vollständig verstanden ist.

... mehr zu:
»ISS »Mikropartikel »Plasmakristall

An Bord der ISS wird der deutsche Astronaut Thomas Reiter in drei Versuchen komplexe Plasmen untersuchen. Das letzte dieser Experimente soll die physikalischen Vorgänge am kritischen Punkt erforschen. Oberhalb dieses Punktes, abhängig von kritischer Temperatur und Druck eines Stoffes, gleichen sich die Aggregatzustände flüssig und gasförmig an - ein Unterschied zwischen diesen beiden Materienzuständen existiert nicht mehr. Die Mikropartikel bewegen sich dann so dynamisch wie ein Gas, ihre Dichte ändert sich aber nicht und bleibt die einer Flüssigkeit. "Wir sind uns aber gar nicht sicher, ob wir den kritischen Punkt überhaupt erreichen", sagt Dr. Hubertus Thomas vom Max-Planck-Institut für extraterrestrische Physik, der unter der Leitung von Prof. Gregor Morfill vom MPE und Professor Vladimir Fortov vom IHED an dem Projekt arbeitet. "Die Experimente sind ein erster Schritt, um die benötigten hohen Temperaturen und Dichten zu erzielen, die wir brauchen, um in Zukunft zum kritischen Punkt zu gelangen."

Bereits im vergangenen Dezember haben die Forscher das Versuchslabor PK-3 Plus, einen 60 mal 80 Zentimeter großen Messzylinder, mit einem russischen Progress-Transporter zur ISS geschickt. "Die Schwerelosigkeit ist die wichtigste Bedingung, um intensiv an Plasmakristallen zu forschen", sagt Thomas. Denn die Schwerkraft presst die Mikropartikel nach unten, sie sedimentieren. Auf der Erde müssen die Wissenschaftler deshalb ein starkes elektrisches Feld aufbauen, um die Teilchen in der Schwebe zu halten. Da Plasma jedoch elektrisch neutral ist, gelingt das nur in einem schmalen Feld nahe der Elektrode. In der Schwerelosigkeit brauchen die Wissenschaftler diese Felder nicht. In ihrem Forschungslabor auf der ISS bauen sie weitaus größere Plasmakristalle - und können die Wechselwirkungen zwischen den Mikroteilchen damit besser erforschen.

Die ersten beiden Experimente haben die Garchinger Forscher programmiert. Sobald Reiter das Plasma in einer abgeschlossenen Kammer über eine Hochfrequenzentladung gezündet hat, verlaufen die Versuche vollautomatisch. Nach dem Prinzip des Salzstreuers werden nun die Mikropartikel in das Plasma geschüttet: Durch ein Sieb werden Plastikkügelchen in einheitlich genormte Partikel dispergiert und in das Plasma gestreut. Teile der Messergebnisse erhalten die Wissenschaftler sofort - den Rest speichert der Computer auf portable Festplatten, die in ca. drei Monaten zurück zur Erde gebracht werden.

Dabei profitieren die Garchinger Wissenschaftler von ihrer engen Zusammenarbeit mit dem Institute for High Energy Densities der Russischen Akademie der Wissenschaften. "Ohne diese Kooperation wären Experimente auf der ISS gar nicht möglich", sagt Thomas über die Einflussmöglichkeiten seiner russischen Partner. Zuvor hatten sie bereits gemeinsam über viereinhalb Jahre das Versuchslabor PK-Nefedow betrieben - damals das erste wissenschaftliche Experiment auf der neuen ISS. Beide Versuchslabore wurden mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) am Max-Planck-Institut für extraterrestrische Physik entwickelt und gemeinsam mit der Kayser-Threde GmbH gebaut.

In mehreren Schulungen haben die Wissenschaftler Thomas Reiter mit der Technik vertraut gemacht. "Herr Reiter freut sich sehr auf diese Experimente, weil sie einmal nichts mit seinem eigenen Körper und den Auswirkungen der Schwerelosigkeit zu tun haben", sagt Thomas.

Im Luftfahrtkontrollzentrum bei Moskau verfolgen die Forscher den Verlauf der Experimente während der ersten 15 Minuten über eine Live-Übertragung. Anschließend hat Reiter zu jedem Zeitpunkt die Möglichkeit, Kontakt mit den Max-Planck-Wissenschaftlern aufzunehmen. "Es kann vorkommen, dass Herr Reiter unsere Hilfe braucht", sagt Thomas. "Dann stehen wir natürlich bereit."

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: ISS Mikropartikel Plasmakristall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise