Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Materiezustand ultrakalter Atome entdeckt

08.01.2002


Münchner Wissenschaftlern gelingt erstmals die Überführung von Materiewellen (Bose-Einstein-Kondensat) in ein Teilchengitter (Mott-Insulator-Zustand) und zurück


Über die Entdeckung eines neuen Materiezustands nahe dem absolutem Nullpunkt berichten Forscher des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München am 3. Januar 2002 in der internationalen Fachzeitschrift "Nature". Mit Hilfe eines dreidimensionalen Lichtkristalls gelang es ihnen, ein superfluides Bose-Einstein-Kondensat in einen so genannten Mott-Isolator-Zustand und wieder zurück zu überführen. In einem Bose-Einstein-Kondensat sind die Atome wellenartig über das Lichtgitter hinweg ausgedehnt, während sie im Mott-Isolator auf einzelne Gitterplätze mit einer fester Atomzahl festgelegt sind und so ein Teilchengitter bilden. Diese Phase wurde zuerst von dem Physiker Sir Neville Mott 1974 im Rahmen von Metall-Isolator-Übergängen in Festkörpern vorausgesagt. Mott wurde u.a. für diese Arbeiten 1977 mit dem Nobelpreis für Physik ausgezeichnet. Der jetzt entdeckte Mott-Isolator am absoluten Temperaturnullpunkt erlaubt in idealer Weise, fundamentale Fragen der Festkörperphysik, der Quantenoptik sowie der Atomphysik zu untersuchen und eröffnet neue Perspektiven für Quantencomputer.

Im Jahr 2001 wurde der Physik-Nobelpreis für bahnbrechende Arbeiten zur Erzeugung von Bose-Einstein-Kondensaten vergeben. In einem solchen Kondensat, nahe am absoluten Temperaturnullpunkt, verlieren alle Atome ihre Individualität. Es entsteht ein wellenartiger Zustand der Materie, der sich in mancher Hinsicht mit Laserlicht vergleichen lässt. Ausgehend von einem solchen atomaren Bose-Einstein-Kondensat ist es den Münchner Forschern mit einem Kollegen der ETH Zürich jetzt erstmals gelungen, einen neuen Materiezustand in der Atomphysik zu erreichen.


Dazu speicherten sie ein Bose-Einstein-Kondensat in einem dreidimensionalen Kristall aus laser-pinzettenartigen winzigen Lichtfallen. Durch eine Änderung der Lichtstärke dieses Gitters konnten die Forscher die Eigenschaften dieses Kondensats dramatisch verändern und einen Übergang von der superfluiden Phase des Bose-Einstein-Kondensats in eine so genannte Mott-Isolator-Phase herbeiführen. Ist die Lichtstärke des Gitters, in dem die Atome gefangen sind, nur gering, so befinden sich alle Atome noch in der superfluiden Phase des Bose-Einstein-Kondensats. In diesem Zustand ist nach den Gesetzen der Quantenmechanik jedes einzelne von ihnen über das gesamte Lichtgitter hinweg wellenartig ausgedehnt. Dieses Atomgas kann sich leicht durch das Gitter hindurch bewegen.


Materiewellen-Interferenzmuster eines Quantengases, das in einem dreidimensionalen Lichtgitter mit mehr als 100.000 besetzten Gitterplätzen gespeichert wurde. Die Abbildungen von links nach rechts: Interferenzmuster mit hohem Kontrast im superfluiden Regime eines Bose-Einstein-Kondensats; Interferenzmuster nach einem Quantenphasenübergang in einen Mott-Isolator ohne Phasenkohärenz; Wiederhergestellte Phasenkohärenz nach einem Quantenphasenübergang von einem Mott-Isolator zurück in ein Bose-Einstein-Kondensat.
Foto: Max-Planck-Institut für Quantenoptik


Erhöhten die Forscher aber die Stärke des Lichtgitters, so konnten sie jedoch eine Umwandlung des superfluiden Kondensats in einen isolierenden Zustand beobachten, bei dem jeder Gitterplatz mit einer exakt definierten Anzahl von Atomen besetzt war. In diesem Fall wird die Bewegung der Atome durch das Gitter aufgrund der abstoßenden Wechselwirkung zwischen ihnen blockiert. Die Physiker Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch und Immanuel Bloch zeigten in ihren Experimenten, dass der Phasenübergang zwischen der superfluiden und der Mott-Isolator-Phase in beide Richtungen durchschritten werden kann. Dieser Übergang wird als Quantenphasenübergang bezeichnet, denn er findet nur am absoluten Temperaturnullpunkt statt. Der Übergang zwischen den Phasen wird dann allein durch die von der Heisenbergschen Unschärferelation vorausgesagten Quantenfluktuation ermöglicht, denn alle thermischen Fluktuationen, die normalerweise einen Phasenübergang bewirken, sind dann bereits "ausgefroren".

Mit ihren Experimenten ist den Münchner Forschern gelungen, ein neues Kapitel in der Physik ultrakalter Atome aufzuschlagen. "Mit diesem Experiment gehen wir einen deutlichen Schritt über ein Bose-Einstein-Kondensat hinaus", stellt Immanuel Bloch, einer der Quantenphysiker, fest. "Im Mott-Isolator-Zustand lassen sich Atome nicht mehr mit den bisher erfolgreichen Theorien für Bose-Einstein-Kondensate beschreiben, sondern müssen aufgrund ihrer Wechselwirkungen miteinander mit Hilfe neuer Theorien beschrieben werden, die bisher weit weniger gut verstanden sind."

Der neue Materiezustand des Mott-Isolators wird den Wissenschaftlern helfen, fundamentale Fragen der Physik stark korrelierter Systeme, die u.a. die Grundlage für unser Verständnis der Supra-leitung bilden, zu klären. Außerdem eröffnet der Mott-Isolator-Zustand vielfältige neue Perspektiven für hochgenaue Materiewellen-Interferometer und Quantencomputer.

Weitere Informationen erhalten Sie von:

Dr. Immanuel Bloch und Prof. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik, Garching
Ludwig-Maximilian-Universität München
Tel.: 0 89 / 21 80 - 37 04 bzw. - 32 12
Fax: 0 89 / 28 51 92
E-Mail: imb@mpq.mpg.de und t.w.haensch@physik.uni-muenchen.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/~haensch/bec/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten