Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Materiezustand ultrakalter Atome entdeckt

08.01.2002


Münchner Wissenschaftlern gelingt erstmals die Überführung von Materiewellen (Bose-Einstein-Kondensat) in ein Teilchengitter (Mott-Insulator-Zustand) und zurück


Über die Entdeckung eines neuen Materiezustands nahe dem absolutem Nullpunkt berichten Forscher des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München am 3. Januar 2002 in der internationalen Fachzeitschrift "Nature". Mit Hilfe eines dreidimensionalen Lichtkristalls gelang es ihnen, ein superfluides Bose-Einstein-Kondensat in einen so genannten Mott-Isolator-Zustand und wieder zurück zu überführen. In einem Bose-Einstein-Kondensat sind die Atome wellenartig über das Lichtgitter hinweg ausgedehnt, während sie im Mott-Isolator auf einzelne Gitterplätze mit einer fester Atomzahl festgelegt sind und so ein Teilchengitter bilden. Diese Phase wurde zuerst von dem Physiker Sir Neville Mott 1974 im Rahmen von Metall-Isolator-Übergängen in Festkörpern vorausgesagt. Mott wurde u.a. für diese Arbeiten 1977 mit dem Nobelpreis für Physik ausgezeichnet. Der jetzt entdeckte Mott-Isolator am absoluten Temperaturnullpunkt erlaubt in idealer Weise, fundamentale Fragen der Festkörperphysik, der Quantenoptik sowie der Atomphysik zu untersuchen und eröffnet neue Perspektiven für Quantencomputer.

Im Jahr 2001 wurde der Physik-Nobelpreis für bahnbrechende Arbeiten zur Erzeugung von Bose-Einstein-Kondensaten vergeben. In einem solchen Kondensat, nahe am absoluten Temperaturnullpunkt, verlieren alle Atome ihre Individualität. Es entsteht ein wellenartiger Zustand der Materie, der sich in mancher Hinsicht mit Laserlicht vergleichen lässt. Ausgehend von einem solchen atomaren Bose-Einstein-Kondensat ist es den Münchner Forschern mit einem Kollegen der ETH Zürich jetzt erstmals gelungen, einen neuen Materiezustand in der Atomphysik zu erreichen.


Dazu speicherten sie ein Bose-Einstein-Kondensat in einem dreidimensionalen Kristall aus laser-pinzettenartigen winzigen Lichtfallen. Durch eine Änderung der Lichtstärke dieses Gitters konnten die Forscher die Eigenschaften dieses Kondensats dramatisch verändern und einen Übergang von der superfluiden Phase des Bose-Einstein-Kondensats in eine so genannte Mott-Isolator-Phase herbeiführen. Ist die Lichtstärke des Gitters, in dem die Atome gefangen sind, nur gering, so befinden sich alle Atome noch in der superfluiden Phase des Bose-Einstein-Kondensats. In diesem Zustand ist nach den Gesetzen der Quantenmechanik jedes einzelne von ihnen über das gesamte Lichtgitter hinweg wellenartig ausgedehnt. Dieses Atomgas kann sich leicht durch das Gitter hindurch bewegen.


Materiewellen-Interferenzmuster eines Quantengases, das in einem dreidimensionalen Lichtgitter mit mehr als 100.000 besetzten Gitterplätzen gespeichert wurde. Die Abbildungen von links nach rechts: Interferenzmuster mit hohem Kontrast im superfluiden Regime eines Bose-Einstein-Kondensats; Interferenzmuster nach einem Quantenphasenübergang in einen Mott-Isolator ohne Phasenkohärenz; Wiederhergestellte Phasenkohärenz nach einem Quantenphasenübergang von einem Mott-Isolator zurück in ein Bose-Einstein-Kondensat.
Foto: Max-Planck-Institut für Quantenoptik


Erhöhten die Forscher aber die Stärke des Lichtgitters, so konnten sie jedoch eine Umwandlung des superfluiden Kondensats in einen isolierenden Zustand beobachten, bei dem jeder Gitterplatz mit einer exakt definierten Anzahl von Atomen besetzt war. In diesem Fall wird die Bewegung der Atome durch das Gitter aufgrund der abstoßenden Wechselwirkung zwischen ihnen blockiert. Die Physiker Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch und Immanuel Bloch zeigten in ihren Experimenten, dass der Phasenübergang zwischen der superfluiden und der Mott-Isolator-Phase in beide Richtungen durchschritten werden kann. Dieser Übergang wird als Quantenphasenübergang bezeichnet, denn er findet nur am absoluten Temperaturnullpunkt statt. Der Übergang zwischen den Phasen wird dann allein durch die von der Heisenbergschen Unschärferelation vorausgesagten Quantenfluktuation ermöglicht, denn alle thermischen Fluktuationen, die normalerweise einen Phasenübergang bewirken, sind dann bereits "ausgefroren".

Mit ihren Experimenten ist den Münchner Forschern gelungen, ein neues Kapitel in der Physik ultrakalter Atome aufzuschlagen. "Mit diesem Experiment gehen wir einen deutlichen Schritt über ein Bose-Einstein-Kondensat hinaus", stellt Immanuel Bloch, einer der Quantenphysiker, fest. "Im Mott-Isolator-Zustand lassen sich Atome nicht mehr mit den bisher erfolgreichen Theorien für Bose-Einstein-Kondensate beschreiben, sondern müssen aufgrund ihrer Wechselwirkungen miteinander mit Hilfe neuer Theorien beschrieben werden, die bisher weit weniger gut verstanden sind."

Der neue Materiezustand des Mott-Isolators wird den Wissenschaftlern helfen, fundamentale Fragen der Physik stark korrelierter Systeme, die u.a. die Grundlage für unser Verständnis der Supra-leitung bilden, zu klären. Außerdem eröffnet der Mott-Isolator-Zustand vielfältige neue Perspektiven für hochgenaue Materiewellen-Interferometer und Quantencomputer.

Weitere Informationen erhalten Sie von:

Dr. Immanuel Bloch und Prof. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik, Garching
Ludwig-Maximilian-Universität München
Tel.: 0 89 / 21 80 - 37 04 bzw. - 32 12
Fax: 0 89 / 28 51 92
E-Mail: imb@mpq.mpg.de und t.w.haensch@physik.uni-muenchen.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/~haensch/bec/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie