Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Polkappen - Fehlanzeige!

26.07.2006
Max-Planck-Forscher gewinnen neue Einblicke in Prozesse, mit denen alte Pulsare ihre Röntgenstrahlung erzeugen

Pulsare gleichen Leuchttürmen, die über komplexe Prozesse elektromagnetische Strahlung erzeugen. Wie aber funktionieren diese kosmischen Kraftwerke? Darüber rätseln die Astronomen seit der Entdeckung dieser Objekte vor fast 40 Jahren. Dank der hohen Empfindlichkeit des europäischen Röntgenobservatoriums XMM-Newton haben Forscher der Max-Planck-Institute für extraterrestrische Physik und für Radioastronomie jetzt eine Teilantwort gefunden: Danach stammt die Energie für die Entstehung der bei jüngeren Pulsaren häufig beobachteten Millionen Grad heißen Polkappen überwiegend aus dem Innern der Sterne und nicht von außen, wie bisher allgemein angenommen. Den Schlüssel zu dieser Erkenntnis lieferte die Beobachtung von fünf, mehrere Millionen Jahre alten Pulsaren.


Künstlerische Darstellung der im Röntgenlicht leuchtenden Magnetosphäre eines Millionen Jahre alten Pulsars. Der Neutronenstern selbst ist unsichtbar, da seine Oberfläche nicht mehr genügend Hitze besitzt, um Röntgenstrahlung zu emittieren. Oberhalb der beiden magnetischen Pole werden elektrisch geladene Teilchen aus der Magnetosphäre nach außen beschleunigt - und senden dabei intensive, stark gerichtete Strahlung aus, die sich mit XMM-Newton beobachten lässt. Bild: Werner Becker / MPI für extraterrestrische Physik


Das Licht des leuchtschwache Pulsars PSR B1929+10 in einer Aufnahme des Röntgenobservatoriums XMM-Newton. Der Pulsar fliegt mit einer Geschwindigkeit von mehr als 177 Kilometer pro Sekunde durch den Weltraum und zieht dabei einen Schweif von Röntgenstrahlen emittierendem Elektronengas nach. Bild: Werner Becker / MPI für extraterrestrische Physik

Neutronensterne entstehen mit Temperaturen von Billionen Grad während des Gravitationskollapses massereicher Sterne, die ihren nuklearen Brennstoffvorrat verbraucht haben und unter ihrer eigenen Last in sich zusammenstürzen. Nach dieser spektakulären Geburt kühlen die heißen Sternleichen stetig ab. Das geschieht während der ersten 100000 Jahre im Wesentlichen durch die Emission von Neutrinos, die den Neutronenstern ungehindert verlassen und dabei Energie mitnehmen. Später überwiegt die Abkühlung durch Abstrahlung thermischer Photonen von der heißen Sternoberfläche.

Beobachtungen mit früheren Röntgensatelliten haben gezeigt, dass die Röntgenstrahlung der Neutronensterne aus drei verschiedenen Gebieten stammt: Zum einen glüht die gesamte, Millionen Grad heiße Oberfläche; zweitens strahlen elektrisch geladene Teilchen bei ihrer Bewegung entlang gekrümmter Magnetfeldlinien beim Verlassen der Magnetosphäre sehr intensiv; zum Dritten emittieren junge Pulsare häufig Röntgenstrahlung, die ihren Millionen Grad heißen Polkappen entspringt.

Bisher haben die Astronomen angenommen, dass diese heißen Flecken ausschließlich durch ein Bombardement hochenergetischer, geladener Teilchen entstehen, die aus der Magnetosphäre zur Oberfläche zurückfliegen und die Polkappenbereiche aufheizen. Beobachtungen mit XMM-Newton lassen an diesem Bild jedoch Zweifel aufkommen. So erlaubte der Satellit erstmals detaillierte Untersuchungen an bisher fünf, jeweils mehrere Millionen Jahre alten Pulsaren. "Kein anderes im Orbit befindliches Röntgenobservatorium besitzt zurzeit die dafür notwendige Empfindlichkeit", sagt Werner Becker, Mitarbeiter am Max-Planck-Institut für extraterrestrische Physik in Garching und Privatdozent an der Universität München.

Becker und seine Kollegen, unter anderem Axel Jessner vom Max-Planck Institut für Radioastronomie in Bonn, fanden jetzt bei den Millionen Jahre alten Pulsaren weder einen Hinweis auf Röntgenstrahlung von der gesamten Neutronensternoberfläche, noch auf heiße Polkappen - obwohl die Forscher intensive Röntgenstrahlung von geladenen Teilchen aus der Magnetosphäre registrierten.

Das Fehlen der Röntgenstrahlung von der gesamten Sternoberfläche überraschte die Wissenschaftler nicht: In den vielen Millionen Jahren seit der Entstehung dieser Neutronensterne sind diese bereits soweit abgekühlt, dass ihre Temperatur weit unterhalb von 500000 Grad Celsius liegt und sich ihr Glühen daher nicht mehr im Röntgenbereich beobachten lässt. Zum Erstaunen der Forscher gaben aber auch die heißen Polkappen keine Röntgenstrahlung ab. Das zeigt, dass die Heizung der Polkappen durch hochenergetische Teilchen bei alten Pulsaren nicht mehr effizient genug funktioniert. "Im Fall des drei Millionen Jahre alten Pulsars mit der Katalogbezeichnung PSR B1929+10, des Prototyps eines alten Pulsars, ist jegliche thermische Komponente in der beobachteten Röntgenstrahlung kleiner als sieben Prozent", sagt Becker.

Wie sich nun zeigt, ist die konventionelle Sichtweise für die Entstehung der heißen Flecken bei jüngeren Pulsaren nicht die einzig mögliche. Eine alternative Interpretation lautet, dass die im Neutronenstern gespeicherte Wärmeenergie durch das starke Magnetfeld zu den Polen geleitet wird, die dadurch Temperaturen von Millionen Grad besitzen. Das ist möglich, weil die Wärmeleitung in Neutronensternen durch Elektronen geschieht. Da diese eine elektrische Ladung tragen, ist ihre Bewegungsrichtung durch die Richtung des Magnetfelds vorgegeben.

Entsprechend könnten die Millionen Grad heißen Flecken bei jüngeren Pulsaren im Wesentlichen durch die Hitze aus dem Innern des Neutronensterns entstehen, und nicht nur durch das Bombardement der zur Oberfläche zurückfliegenden hochenergetischen Teilchen. Die heißen Flecken verschwinden dann mit dem Abkühlen der Neutronensterne und sind entsprechend bei den Millionen Jahre alten Pulsaren nicht mehr zu beobachten. "Die Gültigkeit dieser Sichtweise wird zurzeit in der Fachwelt noch diskutiert, jedoch legen die neuen, mit XMM-Newton durchgeführten Beobachtungen eine solche Interpretation sehr nahe", sagt Werner Becker.

Die Pulsare wurden im Jahr 1967 von den beiden Astronomen Jocelyn Bell-Burnell und Anthony Hewish an der englischen Universität Cambridge entdeckt. Hinter diesen Objekten verbergen sich so genannte Neutronensterne: schnell rotierende und stark magnetisierte Überreste kollabierter massereicher Sterne, die am Ende ihres Lebens in einer Supernova-Explosion zugrunde gehen. Dabei erreichen die Sternleichen eine so hohe Dichte - 1,4 Sonnenmassen konzentrieren sich in einem Raumbereich von nur etwa 20 Kilometer Durchmesser -, dass Elektronen in die Atomkerne dringen und dort zur Entstehung von Neutronen führen. In Neutronensternen und deren Magnetosphären spielen sich sehr komplexe und bis heute nur im Ansatz verstandene Prozesse ab.

Originalveröffentlichung:

Werner Becker et al.
A Multiwavelength study of the Pulsar PSR B1929+10 and its X-ray trail
Astrophysical Journal (ApJ), Vol. 645, Seite 1421ff., 10. Juli 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Neutronenstern Polkappen Pulsar Röntgenstrahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften