Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Polkappen - Fehlanzeige!

26.07.2006
Max-Planck-Forscher gewinnen neue Einblicke in Prozesse, mit denen alte Pulsare ihre Röntgenstrahlung erzeugen

Pulsare gleichen Leuchttürmen, die über komplexe Prozesse elektromagnetische Strahlung erzeugen. Wie aber funktionieren diese kosmischen Kraftwerke? Darüber rätseln die Astronomen seit der Entdeckung dieser Objekte vor fast 40 Jahren. Dank der hohen Empfindlichkeit des europäischen Röntgenobservatoriums XMM-Newton haben Forscher der Max-Planck-Institute für extraterrestrische Physik und für Radioastronomie jetzt eine Teilantwort gefunden: Danach stammt die Energie für die Entstehung der bei jüngeren Pulsaren häufig beobachteten Millionen Grad heißen Polkappen überwiegend aus dem Innern der Sterne und nicht von außen, wie bisher allgemein angenommen. Den Schlüssel zu dieser Erkenntnis lieferte die Beobachtung von fünf, mehrere Millionen Jahre alten Pulsaren.


Künstlerische Darstellung der im Röntgenlicht leuchtenden Magnetosphäre eines Millionen Jahre alten Pulsars. Der Neutronenstern selbst ist unsichtbar, da seine Oberfläche nicht mehr genügend Hitze besitzt, um Röntgenstrahlung zu emittieren. Oberhalb der beiden magnetischen Pole werden elektrisch geladene Teilchen aus der Magnetosphäre nach außen beschleunigt - und senden dabei intensive, stark gerichtete Strahlung aus, die sich mit XMM-Newton beobachten lässt. Bild: Werner Becker / MPI für extraterrestrische Physik


Das Licht des leuchtschwache Pulsars PSR B1929+10 in einer Aufnahme des Röntgenobservatoriums XMM-Newton. Der Pulsar fliegt mit einer Geschwindigkeit von mehr als 177 Kilometer pro Sekunde durch den Weltraum und zieht dabei einen Schweif von Röntgenstrahlen emittierendem Elektronengas nach. Bild: Werner Becker / MPI für extraterrestrische Physik

Neutronensterne entstehen mit Temperaturen von Billionen Grad während des Gravitationskollapses massereicher Sterne, die ihren nuklearen Brennstoffvorrat verbraucht haben und unter ihrer eigenen Last in sich zusammenstürzen. Nach dieser spektakulären Geburt kühlen die heißen Sternleichen stetig ab. Das geschieht während der ersten 100000 Jahre im Wesentlichen durch die Emission von Neutrinos, die den Neutronenstern ungehindert verlassen und dabei Energie mitnehmen. Später überwiegt die Abkühlung durch Abstrahlung thermischer Photonen von der heißen Sternoberfläche.

Beobachtungen mit früheren Röntgensatelliten haben gezeigt, dass die Röntgenstrahlung der Neutronensterne aus drei verschiedenen Gebieten stammt: Zum einen glüht die gesamte, Millionen Grad heiße Oberfläche; zweitens strahlen elektrisch geladene Teilchen bei ihrer Bewegung entlang gekrümmter Magnetfeldlinien beim Verlassen der Magnetosphäre sehr intensiv; zum Dritten emittieren junge Pulsare häufig Röntgenstrahlung, die ihren Millionen Grad heißen Polkappen entspringt.

Bisher haben die Astronomen angenommen, dass diese heißen Flecken ausschließlich durch ein Bombardement hochenergetischer, geladener Teilchen entstehen, die aus der Magnetosphäre zur Oberfläche zurückfliegen und die Polkappenbereiche aufheizen. Beobachtungen mit XMM-Newton lassen an diesem Bild jedoch Zweifel aufkommen. So erlaubte der Satellit erstmals detaillierte Untersuchungen an bisher fünf, jeweils mehrere Millionen Jahre alten Pulsaren. "Kein anderes im Orbit befindliches Röntgenobservatorium besitzt zurzeit die dafür notwendige Empfindlichkeit", sagt Werner Becker, Mitarbeiter am Max-Planck-Institut für extraterrestrische Physik in Garching und Privatdozent an der Universität München.

Becker und seine Kollegen, unter anderem Axel Jessner vom Max-Planck Institut für Radioastronomie in Bonn, fanden jetzt bei den Millionen Jahre alten Pulsaren weder einen Hinweis auf Röntgenstrahlung von der gesamten Neutronensternoberfläche, noch auf heiße Polkappen - obwohl die Forscher intensive Röntgenstrahlung von geladenen Teilchen aus der Magnetosphäre registrierten.

Das Fehlen der Röntgenstrahlung von der gesamten Sternoberfläche überraschte die Wissenschaftler nicht: In den vielen Millionen Jahren seit der Entstehung dieser Neutronensterne sind diese bereits soweit abgekühlt, dass ihre Temperatur weit unterhalb von 500000 Grad Celsius liegt und sich ihr Glühen daher nicht mehr im Röntgenbereich beobachten lässt. Zum Erstaunen der Forscher gaben aber auch die heißen Polkappen keine Röntgenstrahlung ab. Das zeigt, dass die Heizung der Polkappen durch hochenergetische Teilchen bei alten Pulsaren nicht mehr effizient genug funktioniert. "Im Fall des drei Millionen Jahre alten Pulsars mit der Katalogbezeichnung PSR B1929+10, des Prototyps eines alten Pulsars, ist jegliche thermische Komponente in der beobachteten Röntgenstrahlung kleiner als sieben Prozent", sagt Becker.

Wie sich nun zeigt, ist die konventionelle Sichtweise für die Entstehung der heißen Flecken bei jüngeren Pulsaren nicht die einzig mögliche. Eine alternative Interpretation lautet, dass die im Neutronenstern gespeicherte Wärmeenergie durch das starke Magnetfeld zu den Polen geleitet wird, die dadurch Temperaturen von Millionen Grad besitzen. Das ist möglich, weil die Wärmeleitung in Neutronensternen durch Elektronen geschieht. Da diese eine elektrische Ladung tragen, ist ihre Bewegungsrichtung durch die Richtung des Magnetfelds vorgegeben.

Entsprechend könnten die Millionen Grad heißen Flecken bei jüngeren Pulsaren im Wesentlichen durch die Hitze aus dem Innern des Neutronensterns entstehen, und nicht nur durch das Bombardement der zur Oberfläche zurückfliegenden hochenergetischen Teilchen. Die heißen Flecken verschwinden dann mit dem Abkühlen der Neutronensterne und sind entsprechend bei den Millionen Jahre alten Pulsaren nicht mehr zu beobachten. "Die Gültigkeit dieser Sichtweise wird zurzeit in der Fachwelt noch diskutiert, jedoch legen die neuen, mit XMM-Newton durchgeführten Beobachtungen eine solche Interpretation sehr nahe", sagt Werner Becker.

Die Pulsare wurden im Jahr 1967 von den beiden Astronomen Jocelyn Bell-Burnell und Anthony Hewish an der englischen Universität Cambridge entdeckt. Hinter diesen Objekten verbergen sich so genannte Neutronensterne: schnell rotierende und stark magnetisierte Überreste kollabierter massereicher Sterne, die am Ende ihres Lebens in einer Supernova-Explosion zugrunde gehen. Dabei erreichen die Sternleichen eine so hohe Dichte - 1,4 Sonnenmassen konzentrieren sich in einem Raumbereich von nur etwa 20 Kilometer Durchmesser -, dass Elektronen in die Atomkerne dringen und dort zur Entstehung von Neutronen führen. In Neutronensternen und deren Magnetosphären spielen sich sehr komplexe und bis heute nur im Ansatz verstandene Prozesse ab.

Originalveröffentlichung:

Werner Becker et al.
A Multiwavelength study of the Pulsar PSR B1929+10 and its X-ray trail
Astrophysical Journal (ApJ), Vol. 645, Seite 1421ff., 10. Juli 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Neutronenstern Polkappen Pulsar Röntgenstrahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie