Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Polkappen - Fehlanzeige!

26.07.2006
Max-Planck-Forscher gewinnen neue Einblicke in Prozesse, mit denen alte Pulsare ihre Röntgenstrahlung erzeugen

Pulsare gleichen Leuchttürmen, die über komplexe Prozesse elektromagnetische Strahlung erzeugen. Wie aber funktionieren diese kosmischen Kraftwerke? Darüber rätseln die Astronomen seit der Entdeckung dieser Objekte vor fast 40 Jahren. Dank der hohen Empfindlichkeit des europäischen Röntgenobservatoriums XMM-Newton haben Forscher der Max-Planck-Institute für extraterrestrische Physik und für Radioastronomie jetzt eine Teilantwort gefunden: Danach stammt die Energie für die Entstehung der bei jüngeren Pulsaren häufig beobachteten Millionen Grad heißen Polkappen überwiegend aus dem Innern der Sterne und nicht von außen, wie bisher allgemein angenommen. Den Schlüssel zu dieser Erkenntnis lieferte die Beobachtung von fünf, mehrere Millionen Jahre alten Pulsaren.


Künstlerische Darstellung der im Röntgenlicht leuchtenden Magnetosphäre eines Millionen Jahre alten Pulsars. Der Neutronenstern selbst ist unsichtbar, da seine Oberfläche nicht mehr genügend Hitze besitzt, um Röntgenstrahlung zu emittieren. Oberhalb der beiden magnetischen Pole werden elektrisch geladene Teilchen aus der Magnetosphäre nach außen beschleunigt - und senden dabei intensive, stark gerichtete Strahlung aus, die sich mit XMM-Newton beobachten lässt. Bild: Werner Becker / MPI für extraterrestrische Physik


Das Licht des leuchtschwache Pulsars PSR B1929+10 in einer Aufnahme des Röntgenobservatoriums XMM-Newton. Der Pulsar fliegt mit einer Geschwindigkeit von mehr als 177 Kilometer pro Sekunde durch den Weltraum und zieht dabei einen Schweif von Röntgenstrahlen emittierendem Elektronengas nach. Bild: Werner Becker / MPI für extraterrestrische Physik

Neutronensterne entstehen mit Temperaturen von Billionen Grad während des Gravitationskollapses massereicher Sterne, die ihren nuklearen Brennstoffvorrat verbraucht haben und unter ihrer eigenen Last in sich zusammenstürzen. Nach dieser spektakulären Geburt kühlen die heißen Sternleichen stetig ab. Das geschieht während der ersten 100000 Jahre im Wesentlichen durch die Emission von Neutrinos, die den Neutronenstern ungehindert verlassen und dabei Energie mitnehmen. Später überwiegt die Abkühlung durch Abstrahlung thermischer Photonen von der heißen Sternoberfläche.

Beobachtungen mit früheren Röntgensatelliten haben gezeigt, dass die Röntgenstrahlung der Neutronensterne aus drei verschiedenen Gebieten stammt: Zum einen glüht die gesamte, Millionen Grad heiße Oberfläche; zweitens strahlen elektrisch geladene Teilchen bei ihrer Bewegung entlang gekrümmter Magnetfeldlinien beim Verlassen der Magnetosphäre sehr intensiv; zum Dritten emittieren junge Pulsare häufig Röntgenstrahlung, die ihren Millionen Grad heißen Polkappen entspringt.

Bisher haben die Astronomen angenommen, dass diese heißen Flecken ausschließlich durch ein Bombardement hochenergetischer, geladener Teilchen entstehen, die aus der Magnetosphäre zur Oberfläche zurückfliegen und die Polkappenbereiche aufheizen. Beobachtungen mit XMM-Newton lassen an diesem Bild jedoch Zweifel aufkommen. So erlaubte der Satellit erstmals detaillierte Untersuchungen an bisher fünf, jeweils mehrere Millionen Jahre alten Pulsaren. "Kein anderes im Orbit befindliches Röntgenobservatorium besitzt zurzeit die dafür notwendige Empfindlichkeit", sagt Werner Becker, Mitarbeiter am Max-Planck-Institut für extraterrestrische Physik in Garching und Privatdozent an der Universität München.

Becker und seine Kollegen, unter anderem Axel Jessner vom Max-Planck Institut für Radioastronomie in Bonn, fanden jetzt bei den Millionen Jahre alten Pulsaren weder einen Hinweis auf Röntgenstrahlung von der gesamten Neutronensternoberfläche, noch auf heiße Polkappen - obwohl die Forscher intensive Röntgenstrahlung von geladenen Teilchen aus der Magnetosphäre registrierten.

Das Fehlen der Röntgenstrahlung von der gesamten Sternoberfläche überraschte die Wissenschaftler nicht: In den vielen Millionen Jahren seit der Entstehung dieser Neutronensterne sind diese bereits soweit abgekühlt, dass ihre Temperatur weit unterhalb von 500000 Grad Celsius liegt und sich ihr Glühen daher nicht mehr im Röntgenbereich beobachten lässt. Zum Erstaunen der Forscher gaben aber auch die heißen Polkappen keine Röntgenstrahlung ab. Das zeigt, dass die Heizung der Polkappen durch hochenergetische Teilchen bei alten Pulsaren nicht mehr effizient genug funktioniert. "Im Fall des drei Millionen Jahre alten Pulsars mit der Katalogbezeichnung PSR B1929+10, des Prototyps eines alten Pulsars, ist jegliche thermische Komponente in der beobachteten Röntgenstrahlung kleiner als sieben Prozent", sagt Becker.

Wie sich nun zeigt, ist die konventionelle Sichtweise für die Entstehung der heißen Flecken bei jüngeren Pulsaren nicht die einzig mögliche. Eine alternative Interpretation lautet, dass die im Neutronenstern gespeicherte Wärmeenergie durch das starke Magnetfeld zu den Polen geleitet wird, die dadurch Temperaturen von Millionen Grad besitzen. Das ist möglich, weil die Wärmeleitung in Neutronensternen durch Elektronen geschieht. Da diese eine elektrische Ladung tragen, ist ihre Bewegungsrichtung durch die Richtung des Magnetfelds vorgegeben.

Entsprechend könnten die Millionen Grad heißen Flecken bei jüngeren Pulsaren im Wesentlichen durch die Hitze aus dem Innern des Neutronensterns entstehen, und nicht nur durch das Bombardement der zur Oberfläche zurückfliegenden hochenergetischen Teilchen. Die heißen Flecken verschwinden dann mit dem Abkühlen der Neutronensterne und sind entsprechend bei den Millionen Jahre alten Pulsaren nicht mehr zu beobachten. "Die Gültigkeit dieser Sichtweise wird zurzeit in der Fachwelt noch diskutiert, jedoch legen die neuen, mit XMM-Newton durchgeführten Beobachtungen eine solche Interpretation sehr nahe", sagt Werner Becker.

Die Pulsare wurden im Jahr 1967 von den beiden Astronomen Jocelyn Bell-Burnell und Anthony Hewish an der englischen Universität Cambridge entdeckt. Hinter diesen Objekten verbergen sich so genannte Neutronensterne: schnell rotierende und stark magnetisierte Überreste kollabierter massereicher Sterne, die am Ende ihres Lebens in einer Supernova-Explosion zugrunde gehen. Dabei erreichen die Sternleichen eine so hohe Dichte - 1,4 Sonnenmassen konzentrieren sich in einem Raumbereich von nur etwa 20 Kilometer Durchmesser -, dass Elektronen in die Atomkerne dringen und dort zur Entstehung von Neutronen führen. In Neutronensternen und deren Magnetosphären spielen sich sehr komplexe und bis heute nur im Ansatz verstandene Prozesse ab.

Originalveröffentlichung:

Werner Becker et al.
A Multiwavelength study of the Pulsar PSR B1929+10 and its X-ray trail
Astrophysical Journal (ApJ), Vol. 645, Seite 1421ff., 10. Juli 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Neutronenstern Polkappen Pulsar Röntgenstrahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics