Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ATLAS und der Ursprung der Welt - LMU-Physiker beteiligt am größten Teilchenbeschleuniger

25.07.2006
Mehr als 1800 Forscher aus 35 Ländern sind derzeit noch damit beschäftigt, den ATLAS ("A Toroidal LHC ApparatuS") beim Forschungszentrum CERN in Genf aufzubauen. Aber schon nächstes Jahr soll dieser Detektor am "Large Hadron Collider LHC", dem leistungsfähigsten Teilchenbeschleuniger der Welt, in Betrieb gehen. Ziel des Experiments ist, Bedingungen zu schaffen, wie sie Sekundenbruchteile nach dem Urknall herrschten.

Dazu sollen unter anderem Proton-Proton-Wechselwirkungen untersucht, und die Teilchenmassen besser verstanden werden. Auch Physiker der Ludwig-Maximilians-Universität (LMU) München sind an dem großen Experiment beteiligt. So hat jetzt eine Arbeitsgruppe am Lehrstuhl für experimentelle Teilchenphysik von Professor Dr. Dorothee Schaile in Zusammenarbeit mit Forschern des Max-Planck-Instituts für Physik (Werner-Heisenberg-Institut) in München einen wichtige Etappe erreicht: Die Wissenschaftler haben insgesamt 88 Detektormodule von bis zu zwei Meter mal vier Meter Größe gebaut, in Betrieb genommen, mit höchster Präzision vermessen und nun erfolgreich in die ATLAS-Messanlage am CERN eingebaut.

"Diese Module sind Bestandteil des Myon-Spektrometers", berichtet Professor Dr. Otmar Biebel vom Lehrstuhl Schaile. "Das Gerät ist 40 Meter lang und hat einen Durchmesser von 20 Metern. Trotzdem können wir darin die Flugbahn von Myonen mit einer Genauigkeit von 0,1 Millimeter messen." Diese Partikel gehören zu den kleinsten bekannten Teilchen. Myonen sind in ihren Eigenschaften den Elektronen ähnlich, also auch negativ geladen, aber viel schwerer. Sie entstehen bei hochenergetischen Kollisionen zwischen Protonen im "Large Hadron Collider LHC" beim CERN - und insbesondere auch als Folge der Erzeugung anderer Elementarteilchen. "Mit dem Myon-Spektrometer erhält ATLAS also eine herausragende Komponente, um die Physik der Elementarteilchen zu erforschen", so Biebel. "An der gesamten Messanlage kann aber natürlich eine sehr große Anzahl von Experimenten gemacht werden. Im Grunde handelt es sich um einen Mehrzweck-Experimentalaufbau, zu dessen Realisierung viele Gruppen beigetragen haben und noch weiterhin beitragen werden."

Über 15 Jahre hinweg haben die Wissenschaftler ATLAS konzipiert, simuliert, optimiert, dann die Einzelkomponenten aufgebaut und getestet. Jetzt aber kommen sie in die entscheidende Phase der Inbetriebnahme. 2007 soll das umfassende und langjährige Experimentierprogramm mit der ATLAS-Messanlage beginnen und Zugang zu ganz fundamentalen Fragen bieten. Es geht um die physikalischen Grundlagen der Materie, von Raum und Zeit, und auch das Verständnis des Ursprungs von Masse nach dem so genannten Higgs-Mechanismus. Daneben soll auch Supersymmetrie, also die neuartigen und grundlegenden Symmetrien von Materie und Kräften, beobachtet werden. Mit Hilfe von ATLAS wird auch den in der Stringtheorie postulierten zusätzlichen, verborgenen Raumdimensionen nachgespürt werden. Die experimentellen Messungen werden, so hoffen die Forscher, Antworten geben auf die vielfältigen Fragen zur Physik der fundamentalen Elementarteilchen bei Bedingungen, die sehr kurz nach Beginn des Universums herrschten. Das soll zu neuen Erkenntnissen und zu einem tieferen Verständnis von Ursprung und Struktur unseres Kosmos liefern.

... mehr zu:
»Atlas »Elementarteilchen »Teilchen

Die Fragestellungen sind also sehr weit gestreut, und auch an der LMU gibt es unterschiedliche Interessen. Schaile und Biebel bearbeiten das Projekt gemeinsam, wenn auch mit anderen Schwerpunkten. "Professor Schaile ist beispielsweise an dem komplexen, weltumspannenden Computing-Modell für ATLAS engagiert, während ich mich um den Aufbau und Test der Detektormodule gekümmert habe", so Biebel. "Bei den Messungen und Analysen werde ich mich dann unter anderem auf die Physik des Top-Quarks konzentrieren." Quarks gehören ebenfalls zu den Elementarteilchen. Das Top Quark ist dabei der schwerste Vertreter und kann nur unter erheblichem Energieaufwand erzeugt werden. Möglicherweise beantwortet die Wechselwirkung dieser besonderen Teilchen einige Fragen zu ihrer Natur. Bestimmte Analysen könnten auch dazu beitragen, dem Higgs-Boson auf die Spur zu kommen. Die Entdeckung dieses Teilchen ist eines von Frau Schailes Forschungszielen beim ATLAS-Experiment. Denn das immer noch mysteriöse Higgs-Boson wurde bislang nur als Ergänzung der anderen Teilchen theoretisch vorhergesagt - nachgewiesen wurde es bislang noch nicht.

Ansprechpartner:
Professor Dr. Otmar Biebel
Department für Physik der LMU
Tel.: 089-289-14098
Fax: 089-289-14103
E-Mail: Otmar.Biebel@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.atlas.ch
http://www.etp.physik.uni-muenchen.de/

Weitere Berichte zu: Atlas Elementarteilchen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau