Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komet auf schweißtreibender Abmagerungskur

25.07.2006
Fünfeinhalb Jahre benötigt der Komet Tempel 1, um einmal die Sonne zu umkreisen - eine wahrhaft schweißtreibende Angelegenheit, bei der er drei Millionen Tonnen Wasser verliert.

Auf diese Werte kommen Astronomen der Universität Bonn zusammen mit Kollegen vom Harvard-Smithsonian Center for Astrophysics in den USA. Die Wissenschaftler haben den Kometen drei Monate lang von einem Satelliten aus beobachtet und gemessen, wieviel Wasser er durch die Einstrahlung der Sonne verdampft. Seine Abmagerungskur könnte Tempel 1 schon in einigen hundert Jahren das Leben kosten: Irgendwann wird er wahrscheinlich so instabil, dass er einfach auseinander bröselt. Ihre Ergebnisse haben die Forscher nun in der Fachzeitschrift "Icarus" vorgestellt.


Der Komet Schwassmann-Wachmann 3 wurde im Mai dieses Jahres mit Teleskopen des Observatoriums Hoher List aufgenommen, einer Außenstelle des Argelander-Instituts für Astronomie in der Eifel. Wie Tempel 1 zählt auch Schwassmann-Wachmann 3 zu den "kurzperiodischen Kometen", die für einen Sonnenumlauf nur einige Jahre benötigen (Tempel 1 war im vergangenen Jahr von der Nordhalbkugel nicht gut sichtbar). Schwassmann-Wachmann 3 zerbrach in diesem Jahr in mehrere Teile. Ereilt Tempel 1 irgendwann das gleiche Schicksal?

(c) Universität Bonn

Kometen verbringen die meiste Zeit ihres Lebens in den Randbereichen unseres Sonnensystems. Nur wenn sie auf ihrer Bahn der Sonne nahe kommen, werden durch die Sonneneinstrahlung große Mengen Staub und Gas freigesetzt: Es entsteht ein Kometenschweif, der bei besonders großen Kometen auch mit dem bloßem Auge zu sehen ist. Dabei verdampft hauptsächlich Wassereis, weshalb Kometen auch oft als schmutzige Schneebälle bezeichnet werden.

Über die genaue Zusammensetzung der Kometenkerne ist jedoch relativ wenig bekannt. Aus diesem Grund wurde im vergangenen Jahr ein spektakuläres Experiment durchgeführt. Die Raumsonde "Deep Impact" schoss ein mehr als 370 Kilogramm schweres Projektil auf Tempel 1 ab. Beim Einschlag wurde soviel Energie frei gesetzt wie bei der Explosion von 4,5 Tonnen TNT. "Auf diese etwas unsanfte Art hoffte man neue Erkenntnisse über die Zusammensetzung des Kerns zu gewinnen", sagt Dr. Frank Bensch vom Argelander-Institut für Astronomie.

... mehr zu:
»Abmagerungskur »Komet »Kometenkern

Weltweit saßen Wissenschaftler an ihren Teleskopen und fieberten dem Aufprall des Projektils entgegen. Sie sahen, wie durch den Einschlag eine große Staubwolke in das All geschleudert wurde. Die Forschergruppe von Frank Bensch und ihre Kollegen in den USA interessierten sich vor allem für den Wassergehalt der Staubwolke und des Kometenkerns. "Von der Erde aus kann man das jedoch kaum messen, weil die Erdatmosphäre selbst sehr viel Wasserdampf enthält", erklärt Bensch.

Für ihre Beobachtungen nutzten die Wissenschaftler daher den NASA-Satelliten SWAS (Submillimeter Wave Astronomy Satellite). Das Radioteleskop an Bord des Satelliten kann die vom Kometen "ausgeschwitzte" Wasserdampfmenge messen. Drei Monate beobachteten sie damit im Sommer 2005 den Kometen Tempel 1 - so auch die Kollision mit dem Projektil. "Das Material, das dabei frei wurde, enthielt erstaunlicherweise kaum Wasserdampf", sagt Bensch. "Es handelte sich eher um 'feuchten Staub' als um 'schmutzigen Schnee'."

Stellenweise enthält der Komet jedoch durchaus große Mengen Eis: Zu manchen Zeiten verdampften nämlich bis zu 360 Kilogramm Wasser pro Sekunde von seiner Oberfläche. Zwischen diesen "aktiven" Phasen kann die Wasserverdampfungsrate jedoch auf ein Drittel zurückgehen. Der Komet verliert dann "nur noch" 120 Kilogramm Wasser pro Sekunde. "Wir glauben, dass nur ein kleiner Teil der Oberfläche größere Mengen Eis enthält", versucht Bensch die Schwankungen zu erklären. "Der Kometenkern rotiert jedoch. Zu einem Anstieg der Kometenaktivität kommt es immer dann, wenn bei der Rotation einer der vereisten Bereiche von der Schatten- auf die Sonnenseite wechselt, wenn also über diesen aktiven Oberflächenregionen die Sonne aufgeht."

Bensch und seine Mitarbeiter schätzen, dass Tempel 1 während seines Sonnenumlaufs im vergangenen Jahr knapp 3 Millionen Tonnen Wasser verloren hat - auf der Erde entspräche das einem kleinen See mit 500 Metern Durchmesser und 15 Metern Tiefe. In dieser Zeit sind die eisreichen Oberflächenregionen um bis zu 40 Zentimeter "schlanker" geworden. Dennoch sei es unwahrscheinlich, dass der rund sechs Kilometer "dicke" Komet im Laufe der Jahrtausende nach und nach verdampft. "Irgendwann wird er wohl einfach auseinander bröseln", sagt Bensch. "Wenn er nicht zuvor mit dem Jupiter zusammenstößt oder von diesem aus dem Sonnensystem geschleudert wird."

F. Bensch, G.J. Melnick, D.A. Neufeld, M. Harwit, R.L. Snell, B.M, Patten, V. Tolls. Submillimeter Wave Astronomy Satellite observations of comet 9P/Tempel 1 and Deep Impact. Icarus 2006, im Druck. Die Arbeit ist unter http://dx.doi.org/10.1016/j.icarus.2006.05.016 bereits online verfügbar.

Kontaktinformation:
Dr. Frank Bensch
Argelander-Institut für Astronomie, Universität Bonn
Telefon: 0228/73-1774
E-Mail: fbensch@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Abmagerungskur Komet Kometenkern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie