Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komet auf schweißtreibender Abmagerungskur

25.07.2006
Fünfeinhalb Jahre benötigt der Komet Tempel 1, um einmal die Sonne zu umkreisen - eine wahrhaft schweißtreibende Angelegenheit, bei der er drei Millionen Tonnen Wasser verliert.

Auf diese Werte kommen Astronomen der Universität Bonn zusammen mit Kollegen vom Harvard-Smithsonian Center for Astrophysics in den USA. Die Wissenschaftler haben den Kometen drei Monate lang von einem Satelliten aus beobachtet und gemessen, wieviel Wasser er durch die Einstrahlung der Sonne verdampft. Seine Abmagerungskur könnte Tempel 1 schon in einigen hundert Jahren das Leben kosten: Irgendwann wird er wahrscheinlich so instabil, dass er einfach auseinander bröselt. Ihre Ergebnisse haben die Forscher nun in der Fachzeitschrift "Icarus" vorgestellt.


Der Komet Schwassmann-Wachmann 3 wurde im Mai dieses Jahres mit Teleskopen des Observatoriums Hoher List aufgenommen, einer Außenstelle des Argelander-Instituts für Astronomie in der Eifel. Wie Tempel 1 zählt auch Schwassmann-Wachmann 3 zu den "kurzperiodischen Kometen", die für einen Sonnenumlauf nur einige Jahre benötigen (Tempel 1 war im vergangenen Jahr von der Nordhalbkugel nicht gut sichtbar). Schwassmann-Wachmann 3 zerbrach in diesem Jahr in mehrere Teile. Ereilt Tempel 1 irgendwann das gleiche Schicksal?

(c) Universität Bonn

Kometen verbringen die meiste Zeit ihres Lebens in den Randbereichen unseres Sonnensystems. Nur wenn sie auf ihrer Bahn der Sonne nahe kommen, werden durch die Sonneneinstrahlung große Mengen Staub und Gas freigesetzt: Es entsteht ein Kometenschweif, der bei besonders großen Kometen auch mit dem bloßem Auge zu sehen ist. Dabei verdampft hauptsächlich Wassereis, weshalb Kometen auch oft als schmutzige Schneebälle bezeichnet werden.

Über die genaue Zusammensetzung der Kometenkerne ist jedoch relativ wenig bekannt. Aus diesem Grund wurde im vergangenen Jahr ein spektakuläres Experiment durchgeführt. Die Raumsonde "Deep Impact" schoss ein mehr als 370 Kilogramm schweres Projektil auf Tempel 1 ab. Beim Einschlag wurde soviel Energie frei gesetzt wie bei der Explosion von 4,5 Tonnen TNT. "Auf diese etwas unsanfte Art hoffte man neue Erkenntnisse über die Zusammensetzung des Kerns zu gewinnen", sagt Dr. Frank Bensch vom Argelander-Institut für Astronomie.

... mehr zu:
»Abmagerungskur »Komet »Kometenkern

Weltweit saßen Wissenschaftler an ihren Teleskopen und fieberten dem Aufprall des Projektils entgegen. Sie sahen, wie durch den Einschlag eine große Staubwolke in das All geschleudert wurde. Die Forschergruppe von Frank Bensch und ihre Kollegen in den USA interessierten sich vor allem für den Wassergehalt der Staubwolke und des Kometenkerns. "Von der Erde aus kann man das jedoch kaum messen, weil die Erdatmosphäre selbst sehr viel Wasserdampf enthält", erklärt Bensch.

Für ihre Beobachtungen nutzten die Wissenschaftler daher den NASA-Satelliten SWAS (Submillimeter Wave Astronomy Satellite). Das Radioteleskop an Bord des Satelliten kann die vom Kometen "ausgeschwitzte" Wasserdampfmenge messen. Drei Monate beobachteten sie damit im Sommer 2005 den Kometen Tempel 1 - so auch die Kollision mit dem Projektil. "Das Material, das dabei frei wurde, enthielt erstaunlicherweise kaum Wasserdampf", sagt Bensch. "Es handelte sich eher um 'feuchten Staub' als um 'schmutzigen Schnee'."

Stellenweise enthält der Komet jedoch durchaus große Mengen Eis: Zu manchen Zeiten verdampften nämlich bis zu 360 Kilogramm Wasser pro Sekunde von seiner Oberfläche. Zwischen diesen "aktiven" Phasen kann die Wasserverdampfungsrate jedoch auf ein Drittel zurückgehen. Der Komet verliert dann "nur noch" 120 Kilogramm Wasser pro Sekunde. "Wir glauben, dass nur ein kleiner Teil der Oberfläche größere Mengen Eis enthält", versucht Bensch die Schwankungen zu erklären. "Der Kometenkern rotiert jedoch. Zu einem Anstieg der Kometenaktivität kommt es immer dann, wenn bei der Rotation einer der vereisten Bereiche von der Schatten- auf die Sonnenseite wechselt, wenn also über diesen aktiven Oberflächenregionen die Sonne aufgeht."

Bensch und seine Mitarbeiter schätzen, dass Tempel 1 während seines Sonnenumlaufs im vergangenen Jahr knapp 3 Millionen Tonnen Wasser verloren hat - auf der Erde entspräche das einem kleinen See mit 500 Metern Durchmesser und 15 Metern Tiefe. In dieser Zeit sind die eisreichen Oberflächenregionen um bis zu 40 Zentimeter "schlanker" geworden. Dennoch sei es unwahrscheinlich, dass der rund sechs Kilometer "dicke" Komet im Laufe der Jahrtausende nach und nach verdampft. "Irgendwann wird er wohl einfach auseinander bröseln", sagt Bensch. "Wenn er nicht zuvor mit dem Jupiter zusammenstößt oder von diesem aus dem Sonnensystem geschleudert wird."

F. Bensch, G.J. Melnick, D.A. Neufeld, M. Harwit, R.L. Snell, B.M, Patten, V. Tolls. Submillimeter Wave Astronomy Satellite observations of comet 9P/Tempel 1 and Deep Impact. Icarus 2006, im Druck. Die Arbeit ist unter http://dx.doi.org/10.1016/j.icarus.2006.05.016 bereits online verfügbar.

Kontaktinformation:
Dr. Frank Bensch
Argelander-Institut für Astronomie, Universität Bonn
Telefon: 0228/73-1774
E-Mail: fbensch@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Abmagerungskur Komet Kometenkern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften