Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SkyView für kosmische Teilchen

21.12.2001


Die Schulen in den Ballungszentren Nordrhein-Westfalens wird genutzt, um Schüler für die Naturwissenschaften so richtig zu begeistern und gleichzeitig eine Nachweisanlage für hochenergetische Teilchen aus dem Kosmos aufzubauen. Dieses spektakuläre Experiment heißt SkyView.

Das Bundesministerium für Bildung und Forschung (BMBF) finanziert im Rahmen eines Verbundforschungsprojektes die erste Stufe von SkyView mit zunächst einer Million Mark. Das Experiment ist von der Arbeitsgruppe Astroteilchen-Physik der Universität Wuppertal initiiert worden, die auch die Federführung hat. Die Idee hatte bereits vor einigen Jahren der im letzten Sommer emeritierte Experimentalphysiker Professor Dr. Hinrich Meyer.

Die Frage, woraus die hochenergetische kosmische Strahlung besteht und woher sie kommt, ist eines der interessantesten physikalischen Probleme überhaupt. Seit langem ist bekannt, daß wir nicht nur das Licht von Sonne und Sternen sehen, sondern auch einer permanenten "Dusche" von Elementarteilchen aus dem Kosmos ausgesetzt sind. Die Energie dieser Teilchen liegt beim Milliardenfachen medizinischer Röntgenstrahlung (!). Je höher die Energie ist, desto seltener werden allerdings die einschlägigen Ereignisse. Die untere Grenze ist die Energie, die ein Teilchen braucht, um das Magnetfeld der Erde zu überwinden. Solche niederenergetischen Teilchen stammen aus der Sonne oder aus Supernova-Explosionen innerhalb unserer Galaxie. Es handelt sich dabei um Atomkerne verschiedener Massen. Je das Objekt ist, das bei seiner Explosion die Teilchen beschleunigt, desto höher ist die Energie, die es erreichen kann. Weil kleinere Sterne häufiger sind als große, müssen niederenergetische Teilchen auch häufiger sein als hochenergetische.

Ab einer bestimmten Energie ist man sich nicht sicher, woher die Teilchen stammen. Lange Zeit glaubte man, es gebe eine Höchstgrenze für die Energie der Kosmischen Strahlung und diese sei durch die Häufigkeit bestimmt, mit der die schwersten Sterne unserer Galaxie explodieren. Hochenergetische Teilchen sollten auch dadurch seltener werden, daß sie dem Magnetfeld der Galaxie entkommen können. Warum sind diese Teilchen nun so interessant für die Physiker, daß man eine so riesige Teleskopanlage benötigt?

Zunächst scheint ihre Existenz dem Lehrbuchwissen zu widersprechen: Aus der Galaxie können die Teilchen nicht kommen, weil hinreichend kraftvolle Quellen fehlen. Aber auch aus sehr großen Abständen nicht, weil sie sonst ihre Energie auf dem Weg zur Erde in Kollisionen verloren hätten.

Weil die Energiedichte des Universums nach der allgemein akzeptierten Urknall-Theorie in kosmologischer Vergangenheit mit der Zeit abnahm, sind Erkenntnisse über die Geschichte des Universums zu erwarten. Auch über die Astrophysik der kraftvollsten Teilchenbeschleuniger werden in einem Energiebereich, der anderen Meßmethoden nicht zugänglich ist, Informationen gesammelt.

Wenn ein hochenergetisches Teilchen in die Atmosphäre eindringt, wechselwirkt es mit den Kernen der Erdatmosphäre. Die Kerne werden dabei zerstört und zerfallen in sekundäre Teilchen. Da auch diese weiter wechselwirken, entwickelt sich eine Teilchenkaskade, die lawinenartig auf die Erde fällt.

Der Ursprung der kosmischen Strahlung ist weitgehend ungeklärt. Man geht davon aus, daß die kosmischen Teilchen in den Zentren ferner Galaxien, die unvorstellbar massive schwarze Löcher beinhalten, beschleunigt werden. Diese seltenen Quellen sind so weit von der Erde entfernt, daß die Teilchen einen substantiellen Teil ihrer Energie auf dem Weg zur Erde verlieren. Teilchen mit den höchsten Energien sollten die Erde gar nicht mehr erreichen können. Allerdings sind etwa zwanzig dieser Teilchen in den vergangenen Jahrzehnten (!) in verschiedenen Experimenten nachgewiesen worden. Ihr Nachweis erfolgt über die Detektion von Teilchenschauern, die in der hohen Atmosphäre ausgelöst werden und auf der Erde auf einer typischen Fläche von mehreren Quadratkilometern auftreffen.

Je höher die Energie ist, desto größer ist die Erdoberfläche, die von der Teilchen-Lawine bedeckt wird. In dem untersuchten Energiebereich werden mehrere Quadrat-kilometer gleichzeitig mit Teilchen bedeckt. Auf einer so großen Fläche kann stichprobenartig in Abständen von etwa einem Kilometer getestet werden, ob und wann Teilchen niedergegangen sind. Da die gesuchten Ereignisse nur einmal pro Quadratkilometer und Jahrhundert (!) beobachtet werden, muß zu ihrer Erforschung eine Luftschauernachweisanlage ("Array") von mehreren tausend Quadratkilometern gebaut werden.

SkyView soll im Endausbau eine Fläche von 5000 Quadratkilometern erfassen und damit etwa 5000 Mess-Stationen haben, wofür die Forscher ca. 50 Millionen Mark benötigen. Die einfachsten Nachweisinstrumente für geladene Teilchen sind bestimmte Kunststoffmaterialien, in denen von durchgehenden geladenen Teilchen Lichtblitze erzeugt werden. Diese Lichtblitze können von Lichtverstärkern zu elektrischen Signalen verstärkt werden. Ein einzelner solcher Zähler würde kontinuierlich Signale nachweisen. Ein mit dem Internet verbundener PC leitet die Informationen über Zeitpunkt und Größe der innerhalb einer Schule registrierten Teilchen-Ereignisse an einen Zentralcomputer der Universität weiter. Durch Zeitvergleich zwischen mehreren Schulen werden die wirklich hochenergetischen Ereignisse, bei denen mehr als vier Schulen gleichzeitig etwas gesehen haben, ermittelt. Der Computer zeigt, welche Nachbarschulen zeitgleich von Luftschauern getroffen worden sind.

Der technische Aufbau ist übrigens pädagogisch so transparent, daß er Schülern verständlich ist. Vielleicht wird eine benachbarte Grundschule von einer gymnasialen Arbeitsgruppe gleich mitbetreut. Die Schüler gewinnen einen Einblick in eine faszinierende Wissenschaft.

Die bestechende Idee der Wuppertaler Physiker: Kostengünstig ein Großexperiment der Grundlagenforschung aufbauen. Wegen der Größe des Experimentes kann es aber trotzdem nur international realisiert werden. Zunächst sind Universitäten aus den Niederlanden und NRW beteiligt.

Michael Kroemer | idw
Weitere Informationen:
http://skyview.uni-wuppertal.de/

Weitere Berichte zu: Galaxie Quadratkilometer SkyView

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten