Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Explosion auf einem toten Stern

20.07.2006
Astronomen erforschen die Nachwirkungen eines gigantischen Ausbruchs auf dem Objekt RS Ophiuchi

Die Kernexplosion auf der Oberfläche des 5000 Lichtjahre von der Erde entfernten Sterns RS Ophiuchi erzeugt eine Stoßwelle, die sich mit einer Geschwindigkeit von mehr als 1700 Kilometern pro Sekunde ausbreitet. Richard Porcas, Mitglied des deutsch-englischen Entdeckerteams und Wissenschaftler am Bonner Max-Planck-Institut für Radioastronomie, hat dazu Messungen mit dem Europäischen VLBI-Netzwerk koordiniert - denn die Beobachtung wurde erst durch das Zusammenschalten der großen Radioteleskope der Erde möglich. Auf diese Weise gelang es den Forschern, die Nachwirkungen der Explosion in sehr hoher Auflösung zu untersuchen (Nature, 20. Juli 2006).


Künstlerische Darstellung des Doppelsternsystems RS Ophiuchi. Wasserstoffreiches Gas fließt von einem Roten Riesen auf die Oberfläche des begleitenden Weißen Zwergs, wo es zur Explosion kommt. Bild: David A. Hardy & PPARC (www.astroart.org)


Erstes Radiobild der Stoßwelle, aufgenommen mit dem amerikanischen VLBA-Teleskopnetzwerk nur 14 Tage nach der Explosion. Die Farben geben die Radiohelligkeit wieder (Blau: schwach; Rot: hell). Der Doppelstern steht im Zentrum des Bilds, ist aber selbst nicht sichtbar. Bild: NRAO/AUI/NSF

In der Nacht zum 12. Februar 2006 registrierten japanische Astronomen einen drastischen Helligkeitsanstieg des Objekts RS Ophiuchi: Der Stern in der Konstellation Schlangenträger (lat. Ophiuchus) konnte jetzt deutlich mit bloßem Auge gesehen werden. In der Tat war das die letzte einer ganzen Serie solcher Explosionen, aber die erste seit dem Jahr 1985. Das Ereignis bietet die Gelegenheit, neue und wesentlich leistungsstärkere Teleskope zum Einsatz zu bringen, um Ursachen und Auswirkungen dieser stellaren Ausbrüche zu studieren.

So beantragte Tim O'Brien vom Jodrell-Bank-Observatorium der Universität Manchester kurzfristig Beobachtungszeit am amerikanischen VLBA-Netzwerk: "Unsere ersten Messungen, die nur zwei Wochen nach dem Ausbruch erfolgten, zeigten eine expandierende Stoßwelle, deren Ausdehnung bereits der Bahn des Planeten Saturn um die Sonne entsprach. In einer Distanz von 5000 Lichtjahren ist das nur noch der fünf Millionste Teil eines Grads - so viel wie ein Fußball aus 2700 Kilometer Entfernung betrachtet!"

... mehr zu:
»Radioteleskop »Stoßwelle

Die Stoßwelle zeugt von einer gewaltigen Kernexplosion auf der Oberfläche eines Weißen Zwergs, den in engem Abstand ein Roter Riese umkreist. Weiße Zwerge sind die Kerne ausgebrannter, sonnenähnlicher Sterne, deren äußere Schichten ins Weltall abgeblasen wurden. Die etwa erdgroßen Himmelskörper besitzen eine sehr hohe Dichte: Ein Würfelzucker großes Stück Sternmaterie würde auf der Erde etwa eine Tonne wiegen.

In dem beschriebenen Doppelsternsystem strömt Gas des Riesen auf die Oberfläche des Zwergs. Hat sich dort genügend Material angesammelt, zünden thermonukleare Reaktionen - ähnlich denen im Innern der Sonne. Die Fusion läuft im Fall des Weißen Zwergs aber nicht kontrolliert ab, sondern in einer gewaltigen Explosion, die innerhalb weniger Tage die 100000fache Energie der Sonne freisetzt und Gas mit einer Geschwindigkeit von mehreren Tausend Kilometern pro Sekunde in die Umgebung schleudert.

Dieses Material (rund eine Erdmasse) trifft auf die ausgedehnte Atmosphäre des Roten Riesen und produziert dort Stoßwellen, die Elektronen bis auf fast Lichtgeschwindigkeit beschleunigen. Bei der Bewegung durch die Magnetfelder in der Umgebung des Riesensterns erzeugen die Elektronen jene Synchrotronstrahlung, die schließlich von den Radioteleskopen auf der Erde aufgefangen wird.

In den folgenden Monaten verfolgte das Team den Ausbruch von RS Ophiuchi in einer globalen Forschungsinitiative weiter, mit dem Europäischen VLBI Netzwerk (EVN), dem auch Teleskope in Südafrika und China angehören, mit dem britischen MERLIN-Netzwerk sowie mit VLBA und VLA in den USA.

Richard Porcas vom Max-Planck-Institut für Radioastronomie in Bonn, der bereits an der Kampagne beim letzten Ausbruch von RS Ophiuchi im Jahr 1985 beteiligt war, hat die Messungen im Europäischen EVN-Netzwerk koordiniert. "Schon eine Woche nach unseren ersten Beobachtungen war es uns möglich, elf Radioteleskope in Europa, Südafrika und China zu einer sehr empfindlichen Messung zusammenzuschalten. Wir waren überrascht, dass die Stoßwelle mehr und mehr deformiert erschien.

Die Beobachtungen zeigten in den folgenden Monaten eine Formänderung von einem Ring in eine zigarrenförmige Struktur. Über die Ursache rätseln die Astronomen noch: "Entweder schießt die Explosion Materiejets in entgegengesetzte Richtungen heraus, oder die Atmosphäre des roten Riesensterns beeinflusst die Ausbreitung des herausgeschleuderten Materials", sagt Porcas.

Sobald der aktuelle Ausbruch beendet ist, wird sich wiederum Gas auf der Oberfläche des Zwergsterns ansammeln, bis es vielleicht in 20 Jahren zu einer erneuten Explosion kommt. Dabei wollen die Forscher eine wichtige Frage klären: Schießt der Weiße Zwerg bei jeder Explosion das gesamte Material, das er vom Roten Riesen aufgesammelt hat, heraus? Oder spart er einiges davon auf und legt so allmählich an Masse zu? Dazu Tim O'Brien, der den vorherigen Ausbruch von RS Ophiuchi bereits in seiner Doktorarbeit untersucht hat: "Wenn der Weiße Zwerg derart an Masse gewinnt, dann wird er nach einiger Zeit in einer gewaltigen Supernova-Explosion in Stücke gerissen."

Das European VLBI-Network (EVN) ist ein Zusammenschluss von Radioteleskopen in Europa, mit Stationen in China und Südafrika, wobei die einzelnen Institute national finanziert werden. Das Netzwerk ermöglicht einzigartige, hoch aufgelöste Radiobeobachtungen von kosmischen Objekten. Es stellt das weltweit empfindlichste Netzwerk von Radioteleskopen dar, da ihm einige der größten Radioteleskope der Erde (Effelsberg, Westerbork, Jodrell Bank, DSN Madrid) angehören.

MERLIN ("Multi-Element Radio Linked Interferometer Network") ist ein Netzwerk von sieben Radioteleskopen in Großbritannien, mit Abständen von bis zu 217 Kilometer. Bei einer Frequenz von 5 GHz ist die Winkelauflösung von MERLIN besser als 50 Millibogensekunden und übertrifft damit die Auflösung des Hubble-Teleskops im sichtbaren Licht.

Das Very Long Baseline Array (VLBA) ist ein System von zehn Radioteleskopen der 25-Meter-Klasse, das über 8000 Kilometer von Mauna Kea/Hawaii bis nach St. Croix/Virgin Islands reicht.

Originalveröffentlichung:

T. J. O'Brien, M. F. Bode, R. W. Porcas, T. W. B. Muxlow, S. P. S. Eyres, R. J. Beswick, S. T. Garrington, R. J. Davis, A. Evans
An asymmetric shock wave in the 2006 outburst of the recurrent nova RS Ophiuchi
Nature Vol. 442, July 20, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Radioteleskop Stoßwelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE