Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamantzüchtung jetzt auch an der Luft möglich: BIAS u. Uni Bremen mit bahnbrechender Neuentwicklung

19.12.2001




Physiker des Bremer Instituts für angewandte Strahltechnik (BIAS) am Fachbereich Produktionstechnik der Universität Bremen haben jetzt eine bahnbrechende Neuentwicklung geschaffen: Es gelang ihnen erstmals, Diamanten auch an der Luft zu züchten. In punkto Schnelligkeit bricht das neue Verfahren ebenfalls alle Rekorde. Durch das in Bremen entwickelte Verfahren ergeben sich völlig neue und kostengünstige Anwendungsmöglichkeiten in der Industrie. In einem bald beginnenden Projekt, das vom Bundesministerium für Bildung und Forschung gefördert wird, soll die Neuerung in die industrielle Fertigung überführt werden.

Synthetische Diamanten, die im Labor hergestellt werden, sind als Beschichtungen seit vielen Jahren im Einsatz. Sie weisen vorzügliche Eigenschaften auf - extreme Härte, hervorragende Wärmeleitfähigkeit und gute optische Fähigkeiten. Als Verschleißschutz in der Werkzeugindustrie sind synthetische Diamanten nicht mehr wegzudenken. Das Problem war bisher die langwierige und teure Herstellung, denn diese Diamanten konnten nur bei Unterdruck in Vakuumkammern hergestellt werden. Die Schichten wuchsen nur sehr langsam, und die Abmessungen der zu beschichtenden Bauteile wurden durch die Vakuumkammer begrenzt.

Physiker des Bremer Instituts für angewandte Strahltechnik (BIAS) am Fachbereich Produktionstechnik der Universität Bremen haben jetzt eine bahnbrechende Neuentwicklung geschaffen: Es gelang ihnen erstmals, Diamanten auch an der Luft zu züchten. In punkto Schnelligkeit bricht das neue Verfahren ebenfalls alle Rekorde. Durch das in Bremen entwickelte Verfahren ergeben sich völlig neue und kostengünstige Anwendungsmöglichkeiten in der Industrie. In einem bald beginnenden Projekt, das vom Bundesministerium für Bildung und Forschung gefördert wird, soll die Neuerung in die industrielle Fertigung überführt werden.

Diamanten bestehen aus Kohlenstoff und sind chemisch gesehen das gleiche wie Ruß oder das Graphit, aus dem Bleistiftminen sind. Erst die unterschiedliche Verbindung der Kohlenstoffatome macht daraus einen Diamanten oder eben Ruß. Schmuckdiamanten sind monokristallin, bestehen also nur aus einem Kristall. Sie entstanden vor Jahrtausenden im Erdinneren unter gigantischem Druck und hohen Temperaturen; an die Oberfläche gelangten sie durch Erdkrusten-Verschiebungen. Auch diese monokristallinen Diamanten lassen sich heute synthetisch herstellen. Für die Industrie sind jedoch die polykristallinen synthetischen Diamanten wichtig, die aus zahlreichen, dicht beieinander liegenden Kristallen bestehen. Die industrielle Herstellung dieser Diamanten ist seit rund 15 Jahren möglich. Sie werden meist als Beschichtung auf verschiedenen metallischen Trägern aufgebracht und können einige Millimeter dick werden. Als Beschichtung für Werkzeuge schützen sie dank ihrer Härte effektiv vor Verschleiß - der Diamantbohrer ist ein bekanntes Beispiel. In der Elektronik werden die Diamantbeschichtungen zur Wärmeableitung oder als Isolator genutzt, denn Diamant leitet Wärme fünfmal so gut wie Kupfer. Im optischen Bereich haben sie sich - abgelöst vom Substrat - als superharte, chemisch resistente und thermisch stabile "Diamant-Fenster" für spezielle Anwendungen bewährt.

Die Herstellung synthetischer Diamanten erfolgte bislang in Vakuumkammern. Dort wird bei Unterdruck durch Elektrizität oder Ultrahochfrequenzen ein Trägergas, etwa Argon, angeregt. In dieses ionisierte Gas - das sogenannte Plasma - wird wiederum kohlenstoffhaltiges Gas wie zum Beispiel Methan gegeben. Dieses wird vom Plasma in seine Bestandteile zerlegt, und der Kohlenstoff scheidet sich an der Oberfläche des Substrates ab. Die Beschichtung wächst langsam bis zur gewünschten Dicke auf. Dabei müssen vorbestimmte Bedingungen exakt eingehalten werden, damit am Ende eine möglichst reine Diamantschicht - und nicht etwa Graphit - entstanden ist. "Dieses Plasmaverfahren war vor rund 25 Jahren ein erster Durchbruch", sagt Professor Simeon Metev, Abteilungsleiter für Laser-Mikrotechnologie am BIAS. "Es wurde seither immer mehr verfeinert, weist aber trotzdem Einschränkungen auf." Diese werden vor allen durch den Unterdruck und die Kammer bedingt: Die Schichten wachsen dort nur ein paar Tausendstel Millimeter pro Stunde - für eine Beschichtung von einem Millimeter braucht man also fast zehn Tage. "Das Ergebnis ist dann zwar gut, aber es dauert eben sehr lange", so Metev. "Außerdem lassen sich kaum große oder dreidimensionale Bauteile beschichten, weil sie nicht in die Kammer passen oder weil die etablierten Verfahren nur für flächige Teile taugen." Auf Anregung von Professor Gerd Sepold, einem der beiden BIAS-Leiter, wurde gemeinsam eine neue Idee geboren: Die Abscheidung von Diamanten an Oberflächen durch Einsatz von Laserstrahlen.

Hierzu gelang den BIAS-Forschern jetzt ein entscheidender Fortschritt. Sie haben ein sogenanntes Photonen-Plasmatron entwickelt, das die Diamantabscheidung an der offenen Luftatmosphäre erlaubt - also ohne Unterdruck und ohne Kammer. Schon allein das ist ein riesiger Fortschritt, doch auch in punkto Schnelligkeit bricht das neue Verfahren alle Rekorde: Nun sind Beschichtungen von zwei Tausendstel Millimetern pro Minute möglich. "Wenn unsere Entwicklung in die industrielle Anwendung umgesetzt wird, eröffnet sie der Werkzeugindustrie zusätzliche Horizonte", sagt Plasmaphysiker Jörg Schwarz, der mit Ingenieuren, Feinmechanikern und Optikern am Photonen-Plasmatron arbeitet. "Dann könnten auch dreidimensionale Bauteile beschichtet werden - oder etwa lange Sägebänder, wie sie täglich tausendfach zum Schneiden von Metallen eingesetzt werden." Diese Sägebänder, die bislang in keine Vakuumkammer passten, könnten einfach unter den Bremer Plasmatron entlanggezogen werden - wobei sogar nur die kostengünstige Beschichtung der Spitzen möglich wäre und nicht die Härtung des gesamten Bandes.

Die Diamantabscheidung an der Luft wird möglich, weil die Bremer Wissenschaftler Licht statt Elektrizität zur Ionisierung des Trägergases nutzen. Ein extrem starker Multikilowatt-Laser wird über zwei Spiegel geleitet und dann noch einmal in einen "Brennpunkt" fokussiert. Wird die Strahlung kontinuierlich aufrecht erhalten, entsteht dort eine Art Dauerblitz - mit Temperaturen zwischen 15.000 und 20.000 Grad Celsius. "Darin könnte man problemlos einen Ziegelstein schmelzen", verdeutlicht Metev. Das Trägergas wird hier zum Plasma angeregt, welches das ebenfalls zugeleitete kohlenstoffhaltige Gas an diesem Punkt in seine Bestandteile aufspaltet. Die freien Kohlenstoffatome wachsen auf ein darunter liegendes Substrat auf. Eine Wasserkühlung schützt das optische Plasmatron vor thermischer Überlastung. Das gesamte Verfahren wird vom Computer gesteuert, um die exakt definierten Parameter einzuhalten. Dies ist eine wichtige Voraussetzung, um das Wachstum der Diamanten geschickt zu steuern - also auch ein schnelles Beschichten zu ermöglichen, während in den herkömmlichen Vakuumkammern der Unterdruck Beschichtungen nur "in Zeitlupe" erlaubt.

Was sich im Ergebnis einfach anhört, basiert auf jahrelangen Versuchen und Forschungen. Um eine perfekte Schicht abscheiden zu können, mussten die Wissenschaftler immer wieder an Größen wie Strömungsgeschwindigkeit, Druckverhältnissen oder Temperaturen feilen - damit am Ende auch ein Diamant höchster Güte herauskommt. Allein das gleichmäßige Unterhalten des Plasmas an der Luftatmosphäre ist schon eine schwierige Aufgabe. Um dann zu den richtigen polykristallinen Diamanten zu kommen, ist eine genaue Kenntnis des Bindungsverhaltens im Kohlenstoff nötig. Dass die Entwicklung des BIAS eine große Zukunft hat, beweist ein Projekt des Bundesministeriums für Bildung und Forschung (BMBF): In dem mit mehr als drei Millionen Euro ausgestatteten Vorhaben sollen die Bremer Wissenschaftler zusammen mit mehreren Industriepartnern ihre Laborergebnisse in die industrielle Anwendung überführen.

Kai Uwe Bohn | idw

Weitere Berichte zu: BIAS Diamant Neuentwicklung Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics