Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamantzüchtung jetzt auch an der Luft möglich: BIAS u. Uni Bremen mit bahnbrechender Neuentwicklung

19.12.2001




Physiker des Bremer Instituts für angewandte Strahltechnik (BIAS) am Fachbereich Produktionstechnik der Universität Bremen haben jetzt eine bahnbrechende Neuentwicklung geschaffen: Es gelang ihnen erstmals, Diamanten auch an der Luft zu züchten. In punkto Schnelligkeit bricht das neue Verfahren ebenfalls alle Rekorde. Durch das in Bremen entwickelte Verfahren ergeben sich völlig neue und kostengünstige Anwendungsmöglichkeiten in der Industrie. In einem bald beginnenden Projekt, das vom Bundesministerium für Bildung und Forschung gefördert wird, soll die Neuerung in die industrielle Fertigung überführt werden.

Synthetische Diamanten, die im Labor hergestellt werden, sind als Beschichtungen seit vielen Jahren im Einsatz. Sie weisen vorzügliche Eigenschaften auf - extreme Härte, hervorragende Wärmeleitfähigkeit und gute optische Fähigkeiten. Als Verschleißschutz in der Werkzeugindustrie sind synthetische Diamanten nicht mehr wegzudenken. Das Problem war bisher die langwierige und teure Herstellung, denn diese Diamanten konnten nur bei Unterdruck in Vakuumkammern hergestellt werden. Die Schichten wuchsen nur sehr langsam, und die Abmessungen der zu beschichtenden Bauteile wurden durch die Vakuumkammer begrenzt.

Physiker des Bremer Instituts für angewandte Strahltechnik (BIAS) am Fachbereich Produktionstechnik der Universität Bremen haben jetzt eine bahnbrechende Neuentwicklung geschaffen: Es gelang ihnen erstmals, Diamanten auch an der Luft zu züchten. In punkto Schnelligkeit bricht das neue Verfahren ebenfalls alle Rekorde. Durch das in Bremen entwickelte Verfahren ergeben sich völlig neue und kostengünstige Anwendungsmöglichkeiten in der Industrie. In einem bald beginnenden Projekt, das vom Bundesministerium für Bildung und Forschung gefördert wird, soll die Neuerung in die industrielle Fertigung überführt werden.

Diamanten bestehen aus Kohlenstoff und sind chemisch gesehen das gleiche wie Ruß oder das Graphit, aus dem Bleistiftminen sind. Erst die unterschiedliche Verbindung der Kohlenstoffatome macht daraus einen Diamanten oder eben Ruß. Schmuckdiamanten sind monokristallin, bestehen also nur aus einem Kristall. Sie entstanden vor Jahrtausenden im Erdinneren unter gigantischem Druck und hohen Temperaturen; an die Oberfläche gelangten sie durch Erdkrusten-Verschiebungen. Auch diese monokristallinen Diamanten lassen sich heute synthetisch herstellen. Für die Industrie sind jedoch die polykristallinen synthetischen Diamanten wichtig, die aus zahlreichen, dicht beieinander liegenden Kristallen bestehen. Die industrielle Herstellung dieser Diamanten ist seit rund 15 Jahren möglich. Sie werden meist als Beschichtung auf verschiedenen metallischen Trägern aufgebracht und können einige Millimeter dick werden. Als Beschichtung für Werkzeuge schützen sie dank ihrer Härte effektiv vor Verschleiß - der Diamantbohrer ist ein bekanntes Beispiel. In der Elektronik werden die Diamantbeschichtungen zur Wärmeableitung oder als Isolator genutzt, denn Diamant leitet Wärme fünfmal so gut wie Kupfer. Im optischen Bereich haben sie sich - abgelöst vom Substrat - als superharte, chemisch resistente und thermisch stabile "Diamant-Fenster" für spezielle Anwendungen bewährt.

Die Herstellung synthetischer Diamanten erfolgte bislang in Vakuumkammern. Dort wird bei Unterdruck durch Elektrizität oder Ultrahochfrequenzen ein Trägergas, etwa Argon, angeregt. In dieses ionisierte Gas - das sogenannte Plasma - wird wiederum kohlenstoffhaltiges Gas wie zum Beispiel Methan gegeben. Dieses wird vom Plasma in seine Bestandteile zerlegt, und der Kohlenstoff scheidet sich an der Oberfläche des Substrates ab. Die Beschichtung wächst langsam bis zur gewünschten Dicke auf. Dabei müssen vorbestimmte Bedingungen exakt eingehalten werden, damit am Ende eine möglichst reine Diamantschicht - und nicht etwa Graphit - entstanden ist. "Dieses Plasmaverfahren war vor rund 25 Jahren ein erster Durchbruch", sagt Professor Simeon Metev, Abteilungsleiter für Laser-Mikrotechnologie am BIAS. "Es wurde seither immer mehr verfeinert, weist aber trotzdem Einschränkungen auf." Diese werden vor allen durch den Unterdruck und die Kammer bedingt: Die Schichten wachsen dort nur ein paar Tausendstel Millimeter pro Stunde - für eine Beschichtung von einem Millimeter braucht man also fast zehn Tage. "Das Ergebnis ist dann zwar gut, aber es dauert eben sehr lange", so Metev. "Außerdem lassen sich kaum große oder dreidimensionale Bauteile beschichten, weil sie nicht in die Kammer passen oder weil die etablierten Verfahren nur für flächige Teile taugen." Auf Anregung von Professor Gerd Sepold, einem der beiden BIAS-Leiter, wurde gemeinsam eine neue Idee geboren: Die Abscheidung von Diamanten an Oberflächen durch Einsatz von Laserstrahlen.

Hierzu gelang den BIAS-Forschern jetzt ein entscheidender Fortschritt. Sie haben ein sogenanntes Photonen-Plasmatron entwickelt, das die Diamantabscheidung an der offenen Luftatmosphäre erlaubt - also ohne Unterdruck und ohne Kammer. Schon allein das ist ein riesiger Fortschritt, doch auch in punkto Schnelligkeit bricht das neue Verfahren alle Rekorde: Nun sind Beschichtungen von zwei Tausendstel Millimetern pro Minute möglich. "Wenn unsere Entwicklung in die industrielle Anwendung umgesetzt wird, eröffnet sie der Werkzeugindustrie zusätzliche Horizonte", sagt Plasmaphysiker Jörg Schwarz, der mit Ingenieuren, Feinmechanikern und Optikern am Photonen-Plasmatron arbeitet. "Dann könnten auch dreidimensionale Bauteile beschichtet werden - oder etwa lange Sägebänder, wie sie täglich tausendfach zum Schneiden von Metallen eingesetzt werden." Diese Sägebänder, die bislang in keine Vakuumkammer passten, könnten einfach unter den Bremer Plasmatron entlanggezogen werden - wobei sogar nur die kostengünstige Beschichtung der Spitzen möglich wäre und nicht die Härtung des gesamten Bandes.

Die Diamantabscheidung an der Luft wird möglich, weil die Bremer Wissenschaftler Licht statt Elektrizität zur Ionisierung des Trägergases nutzen. Ein extrem starker Multikilowatt-Laser wird über zwei Spiegel geleitet und dann noch einmal in einen "Brennpunkt" fokussiert. Wird die Strahlung kontinuierlich aufrecht erhalten, entsteht dort eine Art Dauerblitz - mit Temperaturen zwischen 15.000 und 20.000 Grad Celsius. "Darin könnte man problemlos einen Ziegelstein schmelzen", verdeutlicht Metev. Das Trägergas wird hier zum Plasma angeregt, welches das ebenfalls zugeleitete kohlenstoffhaltige Gas an diesem Punkt in seine Bestandteile aufspaltet. Die freien Kohlenstoffatome wachsen auf ein darunter liegendes Substrat auf. Eine Wasserkühlung schützt das optische Plasmatron vor thermischer Überlastung. Das gesamte Verfahren wird vom Computer gesteuert, um die exakt definierten Parameter einzuhalten. Dies ist eine wichtige Voraussetzung, um das Wachstum der Diamanten geschickt zu steuern - also auch ein schnelles Beschichten zu ermöglichen, während in den herkömmlichen Vakuumkammern der Unterdruck Beschichtungen nur "in Zeitlupe" erlaubt.

Was sich im Ergebnis einfach anhört, basiert auf jahrelangen Versuchen und Forschungen. Um eine perfekte Schicht abscheiden zu können, mussten die Wissenschaftler immer wieder an Größen wie Strömungsgeschwindigkeit, Druckverhältnissen oder Temperaturen feilen - damit am Ende auch ein Diamant höchster Güte herauskommt. Allein das gleichmäßige Unterhalten des Plasmas an der Luftatmosphäre ist schon eine schwierige Aufgabe. Um dann zu den richtigen polykristallinen Diamanten zu kommen, ist eine genaue Kenntnis des Bindungsverhaltens im Kohlenstoff nötig. Dass die Entwicklung des BIAS eine große Zukunft hat, beweist ein Projekt des Bundesministeriums für Bildung und Forschung (BMBF): In dem mit mehr als drei Millionen Euro ausgestatteten Vorhaben sollen die Bremer Wissenschaftler zusammen mit mehreren Industriepartnern ihre Laborergebnisse in die industrielle Anwendung überführen.

Kai Uwe Bohn | idw

Weitere Berichte zu: BIAS Diamant Neuentwicklung Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE