Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unhaltbarer Freistoß aus 4,8 mm: Mit Mikrofluidik zum Torerfolg

28.06.2006
Augsburger Physiker präsentieren das kleinste Fußballfeld der Welt, auf dem auch tatsächlich gespielt wird.

Exakt so, wie der Ball 1997 bei Roberto Carlos' legendärem Freistoß aus einer Distanz von 32 Metern im leichten Bogen an der gegnerischen Abwehrmauer vorbei ins Tor der Franzosen donnerte, landet auch auf dem wohl kleinsten Fußballfeld der Welt, auf dem tatsächlich gespielt werden kann, der Ball unhaltbar im Kasten. Der kleine Unterschied: Auf dem am Augsburger Lehrstuhl für Experimentalphysik I (Prof. Dr. Achim Wixforth) entwickelten Fußballfeld - einem Chip - ist der Ball ein blaues Mikrotröpfchen mit einem Volumen von 7 Milliardstel Litern Wasser, und die Tordistanz beträgt 4,8 Millimeter.


Der Freistoß im Original (unten) und auf dem Chip (oben).


Aus Chip und Probenhalter wurde die Augsburger "EP1 Mikrofluidik Fußball-Arena", in der das Mikroskop für's Flutlicht sorgt.

Hinter beiden Freistößen steckt ausgefeilte Technik, im einen Fall Balltechnik, im anderen Mikrofluidik. Mikrofluidik beschäftigt sich mit der Bewegung von kleinen Flüssigkeitsmengen. Diese Technologie wird von den Augsburger Forschern für mikrobiologische Experimente eingesetzt, im Bereich der Life-Sciences wird sie durch die Firma Advalytix vermarktet.

Thomas Frommelt, wissenschaftlicher Mitarbeiter am Lehrstuhl Wixforth, hat jetzt auch die sportlichen Potentiale der Mikrofluidik entdeckt und diese dann auch gleich in das kleinste bespielbare Fußballfeld der Welt umgesetzt: Es handelt sich dabei um einen mittels optischer Lithographie hergestellten Chip, wie man ihn in ähnlicher Form auch als konventionellen PC-Mikroprozessor kennt. Spezielle Spritzen ermöglichen es, diesen Chip mit dem Mikrotropfen - dem "Ball" - zu befüllen. Mit einem Interdigitaltransducer (IDT), wie er in jedem Handy oder Videorekorder eingesetzt wird, werden auf der Chip-Oberfläche dann gezielt kleine Erdbebenwellen erzeugt. Sie rufen in dem auf 4,8 Millimeter Tordistanz zum Freistoß bereitliegenden 7 Milliardstel Liter-Tropfen genau diejenigen Strömungen hervor, die den Tropfen auf der von Roberto Carlos' Freistoß vorgezeichneten Bahn ins Tor manövrieren.

Videos vom Spielbetrieb in der Mikrofluidik-Fußball-Arena des Augsburger Lehrstuhls für Experimentalphysik I und - zum Vergleich vom echten Roberto Carlos-Freistoß aus dem Jahr 1997 - stehen auf http://www.physik.uni-augsburg.de/~frommeth/ zur Verfügung.

KONTAKT UND WEITERE INFORMATIONEN:
Thomas Frommelt
Lehrstuhl für Experimentalphysik I
Universität Augsburg
86135 Augsburg
Telefon 0821/598-3329 oder -3303
thomas.frommelt@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/~frommeth/

Weitere Berichte zu: Experimentalphysik Mikrofluidik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine blühende Sternentstehungsregion

14.12.2017 | Physik Astronomie

Wasserstoffproduktion: Proteinumfeld macht Katalysator effizient

14.12.2017 | Biowissenschaften Chemie

Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt

14.12.2017 | Biowissenschaften Chemie