Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchendetektoren spüren Urzeitliche Materie in Internationalem Collider-Projekt auf

25.06.2000


Die ersten Teilchenkollisionen zur wissenschaftlichen Beobachtung von Materie, wie sie unmittelbar nach dem Urknall bestand, wurde heuten mit Hilfe einzigartiger, am israelischen Weizmann Institut gebauter Teilchendetektoren vorgenommen.

Die Kollisionen gaben den Startschuss fuer eines der groessten Experimente dieser Art am Brookhaven National Laboratory auf Long Island. Ziel des Experiments ist, die erste Stufe bei der Entstehung von Materie im Universum zu simulieren. An dem Experiment namens PHENIX nehmen 450 Wissenschaftler aus 11 Laendern teil, darunter ein israelisches Team unter der Leitung von Prof. Itzhak Tserruya von der Abteilung Teilchenphysik des Weizmann Instituts.

In der ersten Millionstel-Sekunde nach dem Urknall existierten noch keine Atome unterschiedlicher Elemente, wie wir sie heute kennen. Die Protonen und Neutronen waren ebenfalls noch nicht ’geboren’. Die brennend heisse Materie, die in den ersten Sekundenbruchteilen der Existenz des Universums in alle Richtungen schoss, bestand aus einer Mischung freier Quarks und Gluonen, die man Quark-Gluon-Plasma nennt.

Spaeter, als das Universum abkuehlte und weniger dicht wurde, ’organisierten’ sich die Quarks und Gluonen in verschiedenen Kombinationen, aus denen komplexere Teilchen wie Protonen und Neutronen hervorgingen. Seither sind Quarks und Gluonen als freie Partikel im Weltall nicht mehr anzutreffen.

Wissenschaftler, die die einzigartigen physikalischen Eigenschaften des Quark-Gluon-Plasma erforschen, versuchen seit laengerem, diese vorzeitliche Materie in Teilchenbeschleunigern ’nachzubauen’. In einem Experiment mit Namen CERES am Europaeischen Laboratorium fuer Teilchenphysik (CERN) bei Genf kam ein internationales Team unter Beteiligung von Wissenschaftlern des Weizmann Instituts diesem Ziel bereits sehr nahe. Doch um sicher zu gehen, dass das Ziel wirklich erreicht wurde, und um Quark-Gluon-Plasma von so hoher Bestaendigkeit zu erhalten, dass seine Eigenschaften untersucht werden koennen, wurde in Brookhaven eigens der Relativistic Heavy Ion Collider - RHIC - gebaut, ein Ionenbeschleuniger mit einem Umfang von 3,8 Kilometern.

Im RHIC entstehen zwei Strahlen aus Gold-Ionen, die auf nahezu Lichtgeschwindigkeit beschleunigt und dann zur Kollision gebracht werden. Die Energie der Kollision, etwa 40 Billionen (1012) Elektronenvolt, verwandelt einen Teil der Bewegungsenergie des Strahls in Waerme, waehrend ein anderer Teil der Energie zu verschiedenen Teilchen wird - ein Vorgang, der in der beruehmten Gleichung Einsteins E=mc2 beschrieben wird. Man geht davon aus, dass die erste Stufe der Entstehung neuer Materie genau wie beim Urknall aus einer Phase von Quark-Gluon-Plasma besteht.

Die 20 Detektoren, die Prof. Tserruya vom Weizmann Institut konstruiert und gebaut hat, sind ein wesentlicher Bestandteil des PHENIX-Messaufbaus, der zum Ziel hat, das Quark-Gluon-Plasma endgueltig zu identifizieren. Die Detektoren geben dreidimensionale Information ueber die genaue Lage von Teilchen, die aus dem Kollisionsgebiet herausgeschleudert werden. Die Angaben ueber die Bewegungsrichtung der Teilchen, ihre Energie und Identitaet, ermoeglichen den Wissenschaftlern, den Zustand der Materie im Kollisionsgebiet zu untersuchen. Das PHENIX-Experiment soll ueber einen Zeitraum von mehreren Jahren laufen.

Zu den Besonderheiten der Detektoren des Weizmann Instituts gehoert, dass sie trotz ihres relativ geringen Gewichts sehr leistungsstark sind - eine seltene Kombination von Eigenschaften. Sie enthalten ausserdem mehrere einzigartige Elemente, wie zum Beispiel extrem komplexe gedruckte Schaltungen. Die Wissenschaftler des Weizmann Instituts fanden nur eine einzige Firma weltweit - in Italien - die die Schaltungen nach ihren Angaben herstellen konnte.

Zu dem Team, das die Detektoren konstruiert hat, gehoerten neben Prof. Tserruya noch Prof. Zeev Fraenkel, Dr. Ilia Ravinovich, Postdoctoral Fellow Dr. Wei Xie und die Graduierten Alexander Gnaeski, Alexander Milov und Alexander Cherlin, alle von der Abteilung Teilchenphysik des Weizmann Instituts.

Professor Tserruya ist Inhaber des Samuel-Sebba-Lehrstuhls fuer Reine und Angewandte Physik. Prof. Tserruyas Forschungsarbeit wird unterstuetzt vom Nella-und-Leon-Benoziyo-Zentrum fuer Hochenergiephysik in der Schweiz.

Debbie Weiss |

Weitere Berichte zu: Detektor Materie Quark-Gluon-Plasma Tserruya

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften