Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchendetektoren spüren Urzeitliche Materie in Internationalem Collider-Projekt auf

25.06.2000


Die ersten Teilchenkollisionen zur wissenschaftlichen Beobachtung von Materie, wie sie unmittelbar nach dem Urknall bestand, wurde heuten mit Hilfe einzigartiger, am israelischen Weizmann Institut gebauter Teilchendetektoren vorgenommen.

Die Kollisionen gaben den Startschuss fuer eines der groessten Experimente dieser Art am Brookhaven National Laboratory auf Long Island. Ziel des Experiments ist, die erste Stufe bei der Entstehung von Materie im Universum zu simulieren. An dem Experiment namens PHENIX nehmen 450 Wissenschaftler aus 11 Laendern teil, darunter ein israelisches Team unter der Leitung von Prof. Itzhak Tserruya von der Abteilung Teilchenphysik des Weizmann Instituts.

In der ersten Millionstel-Sekunde nach dem Urknall existierten noch keine Atome unterschiedlicher Elemente, wie wir sie heute kennen. Die Protonen und Neutronen waren ebenfalls noch nicht ’geboren’. Die brennend heisse Materie, die in den ersten Sekundenbruchteilen der Existenz des Universums in alle Richtungen schoss, bestand aus einer Mischung freier Quarks und Gluonen, die man Quark-Gluon-Plasma nennt.

Spaeter, als das Universum abkuehlte und weniger dicht wurde, ’organisierten’ sich die Quarks und Gluonen in verschiedenen Kombinationen, aus denen komplexere Teilchen wie Protonen und Neutronen hervorgingen. Seither sind Quarks und Gluonen als freie Partikel im Weltall nicht mehr anzutreffen.

Wissenschaftler, die die einzigartigen physikalischen Eigenschaften des Quark-Gluon-Plasma erforschen, versuchen seit laengerem, diese vorzeitliche Materie in Teilchenbeschleunigern ’nachzubauen’. In einem Experiment mit Namen CERES am Europaeischen Laboratorium fuer Teilchenphysik (CERN) bei Genf kam ein internationales Team unter Beteiligung von Wissenschaftlern des Weizmann Instituts diesem Ziel bereits sehr nahe. Doch um sicher zu gehen, dass das Ziel wirklich erreicht wurde, und um Quark-Gluon-Plasma von so hoher Bestaendigkeit zu erhalten, dass seine Eigenschaften untersucht werden koennen, wurde in Brookhaven eigens der Relativistic Heavy Ion Collider - RHIC - gebaut, ein Ionenbeschleuniger mit einem Umfang von 3,8 Kilometern.

Im RHIC entstehen zwei Strahlen aus Gold-Ionen, die auf nahezu Lichtgeschwindigkeit beschleunigt und dann zur Kollision gebracht werden. Die Energie der Kollision, etwa 40 Billionen (1012) Elektronenvolt, verwandelt einen Teil der Bewegungsenergie des Strahls in Waerme, waehrend ein anderer Teil der Energie zu verschiedenen Teilchen wird - ein Vorgang, der in der beruehmten Gleichung Einsteins E=mc2 beschrieben wird. Man geht davon aus, dass die erste Stufe der Entstehung neuer Materie genau wie beim Urknall aus einer Phase von Quark-Gluon-Plasma besteht.

Die 20 Detektoren, die Prof. Tserruya vom Weizmann Institut konstruiert und gebaut hat, sind ein wesentlicher Bestandteil des PHENIX-Messaufbaus, der zum Ziel hat, das Quark-Gluon-Plasma endgueltig zu identifizieren. Die Detektoren geben dreidimensionale Information ueber die genaue Lage von Teilchen, die aus dem Kollisionsgebiet herausgeschleudert werden. Die Angaben ueber die Bewegungsrichtung der Teilchen, ihre Energie und Identitaet, ermoeglichen den Wissenschaftlern, den Zustand der Materie im Kollisionsgebiet zu untersuchen. Das PHENIX-Experiment soll ueber einen Zeitraum von mehreren Jahren laufen.

Zu den Besonderheiten der Detektoren des Weizmann Instituts gehoert, dass sie trotz ihres relativ geringen Gewichts sehr leistungsstark sind - eine seltene Kombination von Eigenschaften. Sie enthalten ausserdem mehrere einzigartige Elemente, wie zum Beispiel extrem komplexe gedruckte Schaltungen. Die Wissenschaftler des Weizmann Instituts fanden nur eine einzige Firma weltweit - in Italien - die die Schaltungen nach ihren Angaben herstellen konnte.

Zu dem Team, das die Detektoren konstruiert hat, gehoerten neben Prof. Tserruya noch Prof. Zeev Fraenkel, Dr. Ilia Ravinovich, Postdoctoral Fellow Dr. Wei Xie und die Graduierten Alexander Gnaeski, Alexander Milov und Alexander Cherlin, alle von der Abteilung Teilchenphysik des Weizmann Instituts.

Professor Tserruya ist Inhaber des Samuel-Sebba-Lehrstuhls fuer Reine und Angewandte Physik. Prof. Tserruyas Forschungsarbeit wird unterstuetzt vom Nella-und-Leon-Benoziyo-Zentrum fuer Hochenergiephysik in der Schweiz.

Debbie Weiss |

Weitere Berichte zu: Detektor Materie Quark-Gluon-Plasma Tserruya

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie