Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblick auf die Venus

26.11.2001


Das erste Röntgenbild der Venus, aufgenommen am 13. Januar 2001 mit dem Röntgenteleskop an Bord des Satelliten Chandra


Ausschnittsvergrößerung.
Foto: Max-Planck-Institut für extraterrestrische Physik


Max-Planck-Forschern gelingt mit dem Satelliten Chandra die erste Beobachtung des Planeten in diesem Spektralbereich

Ein deutsch-amerikanisches Team um Konrad Dennerl vom Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching bei München hat erstmals die Venus mit einem Röntgenteleskop beobachtet; das Instrument kreist an Bord des Satelliten Chandra um die Erde. Die "Röntgenfluoreszenz" entsteht in den oberen Schichten der Venusatmosphäre; Ursache dafür ist die Röntgenstrahlung von der Sonne. Eine wesentliche Rolle bei der Beobachtung spielte das am Garchinger Max-Planck-Institut entwickelte Niederenergie-Transmissionsgitter, das mit dem Chandra-Teleskop hoch aufgelöste Spektroskopie erlaubt. Über ihre Ergebnisse werden die Wissenschaftler in einer der nächsten Ausgaben der renommierten Fachzeitschrift "Astronomy & Astrophysics" berichten.

Die Venus umrundet die Sonne in einer durchschnittlichen Entfernung von 108 Millionen Kilometern, also innerhalb der Erdbahn: Deshalb entfernt sich die Venus von unserem Planeten aus gesehen niemals weiter als 48 Grad von der Sonne. Und aus diesem Grund sehen wir sie als hellen Morgen- oder Abendstern am östlichen oder westlichen Dämmerungshimmel, aber niemals um Mitternacht hoch im Süden. Der geringe Winkelabstand zur Sonne bedeutet für die meisten Röntgensatelliten ein Problem: Sie dürfen nur Objekte in einem Winkelabstand von etwa 90 Grad von der Sonne ins Visier nehmen, da sonst solares Streulicht die Beobachtung stört, sich der Satellit erwärmt oder - im Fall fest montierter Solarzellen - die Stromversorgung beeinträchtigt wird.

Der amerikanische Röntgensatellit Chandra jedoch kann sich bis auf 45 Grad Winkelabstand an die Sonne "herantasten". Dies reicht für die Venus gerade aus. Dazu muss sie sich aber im maximalen Sonnenabstand befinden, was etwa alle 19 Monate zwei Mal hintereinander vorkommt. Im Januar 2001 war dies der Fall: Die Venus glänzte als heller Abendstern und zeigte sich im Fernrohr als "Halbmond".

Weil die dichte Venusatmosphäre einen großen Teil des eintreffenden Sonnenlichts in den Weltraum reflektiert, erscheint sie sehr hell. Das bedeutete ein besonderes Problem bei der Beobachtung, denn die große Leuchtkraft verfälscht das Röntgensignal. Andererseits dürfen Filter zur "Dämpfung" nicht zu dicht sein, da sie sonst nicht nur das sichtbare Licht, sondern auch die zu untersuchende Röntgenstrahlung schwächen. Die Filter an Bord von Chandra sind so ausgelegt, dass sie für die meisten Röntgenquellen das optische Licht ausreichend unterdrücken. Bei der Venus jedoch lässt auch das dichteste Filter noch etwas Licht durch. Dies wirkt sich zwar auf die Röntgenbilder nicht stark aus, beeinträchtigt aber spektrale Untersuchungen, bei denen die Strahlung nach Wellenlängen zerlegt wird.

Um dieses Problem zu umgehen, bedienten sich die Forscher einer speziellen Beobachtungstechnik. Das am Max-Planck-Institut für extraterrestrische Physik entwickelte Transmissionsgitter fächerte die vom Teleskop eingefangene Strahlung so auf, dass das optische Licht auf Bereiche außerhalb des Röntgendetektors abgelenkt wurde und somit nicht mehr stören konnte. Gleichzeitig ermöglichte das Gitter auch eine genaue Analyse des Röntgenspektrums. Dabei zeigte sich, dass die Röntgenstrahlung im Wesentlichen nur auf zwei Wellenlängen konzentriert ist, die genau den Röntgen-Fluoreszenzlinien von Sauerstoff und Kohlenstoff entsprechen, den Hauptbestandteilen in der Kohlendioxid-Atmosphäre der Venus. Wie entsteht die Fluoreszenz? Röntgenphotonen von der Sonne katapultieren aus den Sauerstoff- und Kohlenstoffatomen jeweils ein Elektron heraus, und nachrückende Elektronen besetzen die frei gewordenen Plätze sofort wieder. Bei diesem Prozess wird Strahlung emittiert - die beobachtete Röntgenfluoreszenz.

"Intensität der Röntgen-Fluoreszenzstrahlung in der Venusatmosphäre in Abhängigkeit von der Höhe über der Oberfläche. Die durchgezogenen Linien gelten für senkrechten Einfall der Sonnenstrahlung ("Mittag"), während die gestrichelten Linien die Verhältnisse für flachen Einfall ("Dämmerung") wiedergeben. In allen Fällen ist die Fluoreszenzstrahlung in Höhen von 120 bis 140 Kilometern am kräftigsten. Die Buchstaben C, N, O bezeichnen Kohlenstoff, Stickstoff und Sauerstoff; diese Elemente senden die Fluoreszenzstrahlung aus."

"Grafik: Max-Planck-Institut für extraterrestrische Physik"

Das Röntgenbild zeigt - anders als optische Fotos - eine starke Aufhellung des der Sonne zugewandten Planetenrandes. Diesen Effekt haben Forscher des MPE am Computer detailgetreu simuliert. "Die Röntgenfluoreszenz-Strahlung ist in Höhen von 120 bis 140 Kilometern am kräftigsten. Im Röntgenbereich ist die von der Sonne beschienene Halbkugel der Venus von einer nahezu durchsichtigen leuchtenden Schale umgeben, die am Rand am hellsten erscheint, da wir dort am meisten von der leuchtenden Materie sehen", erklärt Konrad Dennerl. Die Eigenschaften dieser oberen atmosphärischen Schichten, der Thermosphäre und der Exosphäre, lassen sich somit durch Röntgenbeobachtungen gut untersuchen.

Ein weiteres interessantes Ergebnis: Die Wechselwirkung der schweren, hoch ionisierten Atome des Sonnenwinds mit der Atmosphäre spielt - im Gegensatz zur Röntgenstrahlung von Kometen - bei der Venus eine untergeordnete Rolle. "Dies liegt vor allem daran", so Dennerl, "dass das Gas in der Atmosphäre erheblich dichter und konzentrierter ist als in der Koma eines Kometen".

Wie schwierig die Messungen waren, zeigt eine Zahl: Die Stärke der registrierten Röntgenstrahlung betrug ein Zehnmilliardstel der optischen Strahlung - nur etwa alle 40 Sekunden fing der Detektor ein Röntgenphoton auf. Aus diesem Grund musste Chandra die Venus drei Stunden lang unter die Lupe nehmen und die Photonen "aufsammeln". Während dieser Zeit bewegten sich Venus und Erde auf ihren Bahnen um die Sonne und zog Chandra um die Erde. Diese "Choreografie" ließ das Röntgenbild der Venus um das Zwanzigfache ihres Durchmessers im Teleskop weiter wandern. Um dennoch ein scharfes Bild zu erhalten, mussten die Photonen einzeln auf diese Bewegung korrigiert und der CCD-Detektor alle drei Sekunden ausgelesen werden. Die Röntgenphotonen auf dem Bild erscheinen als einzelne Punkte. Zum Zeitpunkt der Beobachtung betrug der scheinbare Durchmesser der Venus nur etwa ein Achtzigstel des Erdmonddurchmessers; erst Chandra machte es möglich, derart kleine Objekte im Röntgenbereich abzubilden.

Dr. Konrad Dennerl | Presseinformation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie