Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Nanoröhrchen können riesigen Druck aufbauen - Neue Fortschritte in der Nanotechnologie

29.05.2006


Experimente zur Verformung von Nanokristallen am Institut für Physikalische Chemie - Veröffentlichung im Wissenschaftsjournal Science


Kohlenstoff-Nanoröhrchen können bei Bestrahlung mit Elektronen einen so starken Druck erzeugen, dass sich winzige kristalline Drähte, die im inneren Hohlraum der Röhrchen eingeschlossen sind, massiv verformen. Dies wurde in einer internationalen Zusammenarbeit der Johannes Gutenberg-Universität Mainz mit Gruppen in Finnland, Mexiko und den USA gezeigt. Das Wissenschaftsjournal Science hat die Ergebnisse in seiner jüngsten Ausgabe publiziert (Science 312, Seite 1199, 26. Mai 2006). "Die Bedeutung dieses Experiments besteht darin, dass es erstmals möglich ist, die Verformung einzelner Metallkristalle mit Abmessungen im Nanometerbereich direkt zu untersuchen", erläutert Prof. Dr. Florian Banhart von Institut für Physikalische Chemie. Kohlenstoff-Nanoröhrchen seien dazu ideale "Nano-Laboratorien". Forschungen im Nanobereich erfolgen in einer Größenordnung von einigen millionstel Millimetern, das ist bis zu 100.000-mal kleiner als ein menschliches Haar. Bei den Kohlenstoff-Nanoröhrchen handelt es sich um winzige, künstlich hergestellte Röhrchen, die aus Kohlenstoffatomen bestehen, die in einem Muster ähnlich dem von Bienenwaben angeordnet sind.

In den letzten Jahren sind viele ungewöhnlichen Eigenschaften von Kohlenstoff-Nanoröhrchen entdeckt worden. Ein Beispiel ist ihre extreme mechanische Stabilität, die von der starken Bindung zwischen Kohlenstoffatomen in einer Graphitlage herrührt und dafür sorgt, dass Kohlenstoffröhrchen die höchste Reißfestigkeit aller heute bekannten Materialien haben. Experimente, die seit kurzem an der Universität Mainz unternommen werden, haben nun gezeigt, dass die hohe Stabilität von Nanoröhrchen auch dann erhalten bleibt, wenn Kohlenstoffatome in den graphitischen Lagen fehlen. Die Experimente wurden in einem hochauflösenden Elektronenmikroskop durchgeführt, wo mit dem hochenergetischen Elektronenstrahl Kohlenstoffatome aus den zylindrischen Graphitschalen herausgeschlagen werden können. Gleichzeitig kann die Struktur mit atomarer Auflösung abgebildet werden. Es wurde beobachtet, dass die hohlen Graphitzylinder unter Elektronenbestrahlung schrumpfen, aber nicht zerstört werden. Dies war zunächst überraschend, konnte dann aber in Zusammenarbeit mit einer Theoriegruppe in Helsinki erklärt werden. Leerstellen im Graphitgitter, also Lücken, die nach dem Herausschießen einzelner Kohlenstoffatome zurückbleiben, haben eine unerwartet hohe Beweglichkeit bei den Temperaturen des Experiments (ca. 600°C) und können sich somit zu Doppelleerstellen vereinigen. Diese Doppelleerstellen sind jedoch instabil und kollabieren durch Schließen der offenen Bindungen, so dass wieder eine geschlossene Graphitlage entsteht. Diese besteht nicht mehr nur aus Sechserringen, wie dies im perfekten Graphit der Fall ist, sondern enthält dann auch Fünfer- oder Siebenerringe. Die Graphitstruktur heilt sich somit selbst, wenn Atome fehlen, und behält auch ihre hohe Reißfestigkeit. Allerdings nimmt ihre Oberfläche ab, so dass die zylindrisch geschlossenen Graphithüllen kontrahieren.


Sind die Röhrchen nun nicht leer, sondern mit anderen Materialien gefüllt, sollte man erwarten, dass ein Schrumpfen der Röhrchen nicht ohne weiteres möglich ist, denn von dem eingeschlossenen Material müsste ja Gegendruck ausgehen. In den Mainzer Experimenten wurde aber beobachtet, dass die Kontraktion der Röhrchen so heftig ist, dass die eingeschlossenen Metallkristalle massiv deformiert und schließlich aus den Röhren in Längsrichtung herausgequetscht werden. Rechnungen zeigen, dass in den kollabierenden Nanoröhrchen bei einem solchen Experiment Drücke von bis zu 400.000 Atmosphären in radialer Richtung auftreten können. Dies ist bei weitem genug, um auch harte Materialien zu verformen.

Die hohe Auflösung des Elektronenmikroskops, in dem das in-situ-Experiment abläuft, ermöglicht es, die Verformung mit atomarer Auflösung zu beobachten. Nach Darstellung von Banhart sind solche Studien vor allem deshalb interessant, weil nanokristalline Materialien, also Festkörper, die aus extrem kleinen Kristalliten aufgebaut sind, eine ungewöhnlich hohe Härte besitzen und deshalb bereits seit einigen Jahren technisch eingesetzt werden. "Die mechanischen Eigenschaften nanokristalliner Materialien sind jedoch noch wenig verstanden, unter anderem deshalb, weil das Verformungsverhalten einzelner Kristallite, d.h. einkristalliner Körner, aus denen das Material aufgebaut ist, noch nicht untersucht werden konnte", sagte der Physiker. Dazu können Experimente, wie sie jetzt in Mainz gelungen sind, künftig beitragen.

Kontakt und Informationen:
Prof. Dr. Florian Banhart
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-23149
E-Mail: Banhart@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.staff.uni-mainz.de/banhart/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie