Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Nanoröhrchen können riesigen Druck aufbauen - Neue Fortschritte in der Nanotechnologie

29.05.2006


Experimente zur Verformung von Nanokristallen am Institut für Physikalische Chemie - Veröffentlichung im Wissenschaftsjournal Science


Kohlenstoff-Nanoröhrchen können bei Bestrahlung mit Elektronen einen so starken Druck erzeugen, dass sich winzige kristalline Drähte, die im inneren Hohlraum der Röhrchen eingeschlossen sind, massiv verformen. Dies wurde in einer internationalen Zusammenarbeit der Johannes Gutenberg-Universität Mainz mit Gruppen in Finnland, Mexiko und den USA gezeigt. Das Wissenschaftsjournal Science hat die Ergebnisse in seiner jüngsten Ausgabe publiziert (Science 312, Seite 1199, 26. Mai 2006). "Die Bedeutung dieses Experiments besteht darin, dass es erstmals möglich ist, die Verformung einzelner Metallkristalle mit Abmessungen im Nanometerbereich direkt zu untersuchen", erläutert Prof. Dr. Florian Banhart von Institut für Physikalische Chemie. Kohlenstoff-Nanoröhrchen seien dazu ideale "Nano-Laboratorien". Forschungen im Nanobereich erfolgen in einer Größenordnung von einigen millionstel Millimetern, das ist bis zu 100.000-mal kleiner als ein menschliches Haar. Bei den Kohlenstoff-Nanoröhrchen handelt es sich um winzige, künstlich hergestellte Röhrchen, die aus Kohlenstoffatomen bestehen, die in einem Muster ähnlich dem von Bienenwaben angeordnet sind.

In den letzten Jahren sind viele ungewöhnlichen Eigenschaften von Kohlenstoff-Nanoröhrchen entdeckt worden. Ein Beispiel ist ihre extreme mechanische Stabilität, die von der starken Bindung zwischen Kohlenstoffatomen in einer Graphitlage herrührt und dafür sorgt, dass Kohlenstoffröhrchen die höchste Reißfestigkeit aller heute bekannten Materialien haben. Experimente, die seit kurzem an der Universität Mainz unternommen werden, haben nun gezeigt, dass die hohe Stabilität von Nanoröhrchen auch dann erhalten bleibt, wenn Kohlenstoffatome in den graphitischen Lagen fehlen. Die Experimente wurden in einem hochauflösenden Elektronenmikroskop durchgeführt, wo mit dem hochenergetischen Elektronenstrahl Kohlenstoffatome aus den zylindrischen Graphitschalen herausgeschlagen werden können. Gleichzeitig kann die Struktur mit atomarer Auflösung abgebildet werden. Es wurde beobachtet, dass die hohlen Graphitzylinder unter Elektronenbestrahlung schrumpfen, aber nicht zerstört werden. Dies war zunächst überraschend, konnte dann aber in Zusammenarbeit mit einer Theoriegruppe in Helsinki erklärt werden. Leerstellen im Graphitgitter, also Lücken, die nach dem Herausschießen einzelner Kohlenstoffatome zurückbleiben, haben eine unerwartet hohe Beweglichkeit bei den Temperaturen des Experiments (ca. 600°C) und können sich somit zu Doppelleerstellen vereinigen. Diese Doppelleerstellen sind jedoch instabil und kollabieren durch Schließen der offenen Bindungen, so dass wieder eine geschlossene Graphitlage entsteht. Diese besteht nicht mehr nur aus Sechserringen, wie dies im perfekten Graphit der Fall ist, sondern enthält dann auch Fünfer- oder Siebenerringe. Die Graphitstruktur heilt sich somit selbst, wenn Atome fehlen, und behält auch ihre hohe Reißfestigkeit. Allerdings nimmt ihre Oberfläche ab, so dass die zylindrisch geschlossenen Graphithüllen kontrahieren.


Sind die Röhrchen nun nicht leer, sondern mit anderen Materialien gefüllt, sollte man erwarten, dass ein Schrumpfen der Röhrchen nicht ohne weiteres möglich ist, denn von dem eingeschlossenen Material müsste ja Gegendruck ausgehen. In den Mainzer Experimenten wurde aber beobachtet, dass die Kontraktion der Röhrchen so heftig ist, dass die eingeschlossenen Metallkristalle massiv deformiert und schließlich aus den Röhren in Längsrichtung herausgequetscht werden. Rechnungen zeigen, dass in den kollabierenden Nanoröhrchen bei einem solchen Experiment Drücke von bis zu 400.000 Atmosphären in radialer Richtung auftreten können. Dies ist bei weitem genug, um auch harte Materialien zu verformen.

Die hohe Auflösung des Elektronenmikroskops, in dem das in-situ-Experiment abläuft, ermöglicht es, die Verformung mit atomarer Auflösung zu beobachten. Nach Darstellung von Banhart sind solche Studien vor allem deshalb interessant, weil nanokristalline Materialien, also Festkörper, die aus extrem kleinen Kristalliten aufgebaut sind, eine ungewöhnlich hohe Härte besitzen und deshalb bereits seit einigen Jahren technisch eingesetzt werden. "Die mechanischen Eigenschaften nanokristalliner Materialien sind jedoch noch wenig verstanden, unter anderem deshalb, weil das Verformungsverhalten einzelner Kristallite, d.h. einkristalliner Körner, aus denen das Material aufgebaut ist, noch nicht untersucht werden konnte", sagte der Physiker. Dazu können Experimente, wie sie jetzt in Mainz gelungen sind, künftig beitragen.

Kontakt und Informationen:
Prof. Dr. Florian Banhart
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-23149
E-Mail: Banhart@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.staff.uni-mainz.de/banhart/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise