Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Astrophysiker erzielen Weltrekord in der Messgenauigkeit: Neue Daten für Elemententstehung

13.11.2001


Neue Daten für Sternmodelle und die Entstehung der
chemischen Elemente. Gleich mit zwei wissenschaftlichen Publikationen haben Stuttgarter Astrophysiker in den vergangenen Monaten die Fachwelt aufhorchen lassen: Die in den Physical Review Letters (Vol. 86, Nr. 15, 9. April 2001; Vol. 87, Nr. 20, 12. November 2001) veröffentlichten Ergebnisse aufwendiger experimenteller Messungen legen es nahe, daß die Kapitel über die Entstehung der Elemente in den Sternen und über die Lebensgeschichte von Sternen neu konzipiert werden müssen. Einer internationalen Arbeitsgruppe am Institut für Strahlenphysik der Universität Stuttgart (IfS) unter der Leitung von Dr. Wolfgang Hammer, in Zusammenarbeit mit Forschern aus Athen, Mainz und Tübingen, ist es gelungen, mit verbesserten Meßmethoden die beiden "wichtigsten" Kernreaktionen in Sternen neu zu vermessen. Mit der in den Experimenten erreichten Messempfindlichkeit stellten die Stuttgarter sogar einen Weltrekord auf.

Schlüssel zur Entstehung der Elemente


Bei der ersten der beiden von der Deutschen Forschungsgemeinschaft geförderten Untersuchungen handelt es sich um die Fusion von Kohlenstoff mit Helium zu Sauerstoff (PRL Vol. 86). Die Stärke dieser Reaktion bestimmt maßgeblich die Häufigkeit und das Verhältnis der Elemente Kohlenstoff und Sauerstoff im Universum und damit auch auf unserem Planeten. Beiden Elementen kommt eine zentrale Rolle bei der Entstehung und der Existenz organischen Lebens zu. Die Fusionsreaktion wirkt sich jedoch auch ganz entscheidend auf die Produktion der schweren Elemente in Sternen aus, da der überwiegende Teil der chemischen Elemente in Sternen über ein sehr komplexes Netzwerk von Kernreaktionen aus den leichtesten Bausteinen Wasserstoff und Helium gebildet wird. Mit anderen Worten: Das "Baumaterial" für die schweren Elemente durchläuft in einer frühen Phase das Kohlenstoff- und Sauerstoffstadium, deshalb betrachtet man diese Reaktion als "die" Schlüsselreaktion der Nukleosynthese. Die neuen Resultate wurden von Ralf Kunz im Rahmen seiner Doktorarbeit erarbeitet.
Rote Riesen als Neutronenfabrik
Bei der zweiten fundamentalen Reaktion (PRL Vol. 87), die von der Stuttgarter Arbeitsgruppe untersucht wurde, handelt es sich um die wichtigste neutronenliefernde Reaktion, wie sie in den massereichen Sternen des Universums abläuft. Bei ihr fängt ein Neon-22-Kern einen Heliumkern (Alpha-Teilchen) ein und daraus entsteht das für die weitere Elemententstehung so wichtige Neutron und ein Magnesium-25-Kern. Die Neutronen sind für den Aufbau der schweren Elemente entscheidend, denn als ungeladene Teilchen können sie noch von Kernen schwerer als Eisen (Masse 56) eingefangen werden.

Der Hauptteil der Elemente bis zur Masse 100 wird in den sogenannten Roten Riesen erzeugt. Diese Sterne sind in der Regel etwa 15 bis 50 mal schwerer als unsere Sonne und in ihrem Innern herrschen Temperaturen von etwa 200 Millionen Grad. Die extrem hohen Temperaturen blähen die Riesensterne immer weiter auf; unsere Sonne wird in ihrem Endstadium als Roter Riese bis etwa zur Marsbahn reichen. Als Brennstoff haben die Roten Riesen ihren Vorrat an Wasserstoff verbraucht und nur noch Helium zurückbehalten. Die Temperaturen sind nun jedoch so hoch, dass Reaktionen mit Helium einsetzen können, in deren Verlauf auch immer mehr Neutronen für die schweren Elemente erzeugt werden.
Messgenauigkeit - Jahrmillionen auf Tage verkürzen
Um astrophysikalische Reaktionen wie die Kohlenstoff-Helium-Fusion oder die Neutronenproduktion, innerhalb einer erträglichen Zeitspanne von Wochen oder Monaten messen zu können, obwohl sie doch in den Sternen während Jahrmillionen bis -milliarden ablaufen, braucht man geeignete experimentelle Bedingungen. Trotz der hohen Temperaturen im Sterninnern verlaufen die allermeisten Kernreaktionen sehr langsam, also mit einer sehr kleinen Wahrscheinlichkeit. Und die überhaupt messbare Strahlung der experimentell im Labor erzeugten Reaktionen ist so schwach, dass man sehr viel an Technik aufbieten muss, um sie aus allen Störfaktoren wie der allgegenwärtigen Untergrundstrahlung und der kosmischen Höhenstrahlung herausfiltern zu können.
DYNAMITRON schießt auf RHINOCEROS
Die Stuttgarter Forscher profitierten dabei zunächst von der hohen Teilchenintensität, die der DYNAMITRON-Beschleuniger des Instituts für Strahlenphysik der Universität Stuttgart leistet und der sich daher für Experimente aus der Astrophysik besonders eignet. Auch die bei den Messungen eingesetzten sensiblen Detektoren wurden zum Teil am Stuttgarter Institut selbst entwickelt und für das Messproblem maßgeschneidert. Zur Untersuchung der Reaktionen von Gasatomen mit Ionenstrahlen haben die Stuttgarter Physiker speziell eine wandlose Gastargetanlage entwickelt - zunächst zur Erforschung nuklear gepumpter Laser - die wegen ihrer Masse liebevoll RHINOCEROS genannt wird. Damit ist es möglich, einen Projektilstrahl direkt aus dem Hochvakuum in ein Gasvolumen zu schießen, ohne dass dieser Strahl irgendeine störanfällige und hemmende Trennfolie durchdringen muss. Ein neu entwickelter Stuttgarter Neutronendetektor weist von den gesuchten Neutronen absolut jedes zweite nach, was dem technisch maximal Erreichbaren ziemlich nahe kommt, so daß die Messungen zur Neutronenentstehung mit einer bisher weltweit unerreichten Empfindlichkeit im Zuge der Doktorarbeit von Michael Jaeger durchgeführt werden konnten. An den Messungen waren auch Armin Mayer und Michael Fey beteiligt.
Neue astrophysikalische Reaktionsrate aufgestellt
In beiden Experimenten ist die Wahrscheinlichkeit der Reaktion äußerst gering und der Ablauf dagegen gleichzeitig hochkomplex. Dennoch benötigt man besonders ergiebige experimentelle Daten, die auch für die Extrapolation in zeitlich gar nicht mehr messbare Bereiche verwendet werden können. Die astrophysikalischen Reaktionsraten der Stuttgarter Gruppe, das Endprodukt aller Experimente, Messungen und Interpolationen, unterscheiden sich im Absolutwert von derjenigen anderer Forschungsgruppen. Ganz entscheidend ist jedoch, daß die Fehlergrenzen, also der Bereich der Unsicherheit, bei den neuen Reaktionsraten deutlich reduziert werden konnte. Denn die gesteigerte Empfindlichkeit hat große Auswirkungen auf die Fehlerquote bei der Umsetzung der Daten in die daraus abgeleitete Erklärung der Sternentwicklung. Mit den Stuttgarter Messungen konnte bei der Neon-Reaktion die Unsicherheit von einem unakzeptablen Faktor 500 auf 5, also um das Hundertfache gesenkt werden. Eine weitere Steigerung wäre nur denkbar, wenn man die Experimente, also die gesamte Laboranlage, einen Kilometer tief unter die Erdoberfläche verlegt, um der störenden Höhenstrahlung zu entgehen. "Die in unseren Messungen gewonnenen neuen Daten werden neue Berechnungen zur Nukleosynthese und zu den Sternmodellen möglich, aber auch erforderlich machen", sagt Dr. Wolfgang Hammer, Leiter der Astrophysik-Arbeitsgruppe am IfS.
Kontakt: Prof. Dr. Ulrich Kneißl, Dr. J. Wolfgang Hammer, Institut für Strahlenphysik (IfS), Tel. 0711/685-3872 bzw. -3888; Fax 0711/685-3866
E-Mail: kneissl@ifs.physik.uni-stuttgart.de, hammer@ifs.physik.uni-stuttgart.de

Dr. Ulrich Engler | idw

Weitere Berichte zu: Astrophysik Elemententstehung Helium IFS Kernreaktion Neutron Strahlenphysik Vol

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise