Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bose-Einstein-Thermometer: Markus Oberthaler und Team legen neue Erkenntnisse vor

17.05.2006


Schwankungen in gekoppelten Kondensaten nutzbar gemacht - Team des Kirchhoff-Instituts für Physik der Universität Heidelberg publiziert neue Ergebnisse



Mit Bose-Einstein-Kondensaten aus ultrakalten Atomgasen lässt sich das faszinierende Zusammenspiel von Quantenmechanik und Thermodynamik unter nahezu idealen Bedingungen studieren. Zerlegt man ein Kondensat in zwei unabhängige Teile, die man nach einiger Zeit wieder zusammenbringt, so können sich deren Materiewellen unter bestimmten Bedingungen kohärent überlagern. Dabei entsteht ein Interferenzmuster, wie man es vom Doppelspaltexperiment her kennt. Anhand dieser Interferenzen hat man jetzt an der Universität Heidelberg beobachtet, wie zwei Materiewellen durch thermische Schwankungen ihre Kohärenz verlieren. Dadurch wurde es möglich, extrem tiefe Temperaturen zu messen.



Markus Oberthaler und seine Mitarbeiter haben zunächst ein Bose-Einstein-Kondensat aus einigen Tausend Rubidium-87-Atomen in einer optischen Dipolfalle hergestellt und festgehalten. Aus dem harmonischen Potential der Falle machten sie dann mit Hilfe von stehenden Lichtwellen, die sich im Zentrum der Falle kreuzten, ein Doppelmuldenpotential: Es bildeten sich zwei Potentialmulden, die von einer Barriere getrennt waren. Indem sie die Lichtintensität und damit auch die Barriere langsam erhöhten, konnten die Forscher ihr Kondensat behutsam in zwei Atomwolken zerlegen, die in den beiden Potentialmulden festgehalten wurden.

Die Materiewellen der beiden Atomwolken hatten jeweils eine Phase, die komplementär zur Zahl der Atome in der Wolke war. Nach Heisenbergs Unschärfebeziehung schwankte die Phase umso stärker, je genauer die Zahl der Atome in der Potentialmulde festlag. Bei einer unendlich hohen Barriere zwischen den beiden Mulden hätte die Zahl der Atome exakt festgelegen und die Phase wäre völlig unbestimmt gewesen. Doch tatsächlich war die Höhe der Barriere so bemessen, sodass die Atome von einer Mulde in die andere tunneln konnten. Die Phasen der Materiewellen hatten deshalb eine endliche Unschärfe, die umso kleiner war, je stärker die beiden Wellen durch das Tunneln miteinander gekoppelt waren.

Um die quantenmechanischen Phasen der beiden Materiewellen miteinander zu vergleichen, schalteten die Forscher die optische Dipolfalle ab, woraufhin sich die Materiewellenpakete ausdehnten und durchdrangen. Es bildete sich ein Interferenzmuster aus Bereichen hoher und geringerer Atomdichte, aus dem man die Phasendifferenz der beiden Materiewellen bestimmen konnte. Um die Schwankungen der Phasendifferenz zu messen, wiederholten die Heidelberger Physiker dieses Interferenzexperiment bis zu 60-mal mit immer wieder neu hergestellten Bose-Einstein-Kondensaten. Dabei hielten sie die Temperatur des Kondensats und die Tunnelkopplung der Potentialmulden konstant.

Wie hängen die Schwankungen der Phasendifferenz f von der Temperatur T der Atomwolken und der Kopplungsstärke J ab? Zunächst hielten die Forscher J konstant auf ca. 69 nK (Nanokelvin) und erhöhten T schrittweise von 15 nK auf 75 nK. Bei 15 nK schwankte f zwischen -p/4 und +p/4 mit dem Mittelwert 0. Mit steigendem T nahmen die Schwankungen rasch zu, sodass bei 75 nK die gemessenen Werte für f nahezu gleichförmig zwischen -p und +p verteilt waren. Ein anderes Bild ergab sich, wenn T bei 15 nK festgehalten und J erhöht wurde. Bei schwacher Kopplung (J=0,04 nK) lagen die Atomzahlen in den Potentialmulden fest und die Phasenunschärfe war so groß, dass sich die gemessenen f-Werte gleichmäßig zwischen -p und +p verteilten. Mit zunehmender Kopplungsstärke J nahm die Phasenunschärfe indes stetig ab, und bei J=400 nK konzentrierten sich die f-Werte in einem engen Intervall um 0: Die Kopplung hatte den Verlust der Phasenkohärenz verhindert.

Das Verhalten der beiden gekoppelten Atomwolken im Doppelmuldenpotential zeigte große Ähnlichkeit mit dem Josephson-Effekt zweier Supraleiter, die durch eine dünne Isolatorschicht voneinander getrennt sind. Mit Hilfe eines Modells von Ananikian und Bergeman, das auf dieser Analogie aufbaut, konnten die Heidelberger Forscher vorhersagen, dass der Mittelwert , der die Schwankungen von f wiedergibt, eine universelle, monoton fallende Funktion von T/J ist. Umfangreiche Experimente bestätigen dieses universelle Verhalten von für T/J-Werte von 0,1 bis 100.

Ist die Kopplungsenergie J bekannt, so ermöglicht es dieser Zusammenhang zwischen und T/J, aus den gemessenen Schwankungen der Phasendifferenz f die Temperatur der Atomwolken und des ihnen zugrunde liegenden Kondensats zu bestimmen. Auf diese Weise können Temperaturen weit unterhalb der kritischen Temperatur Tc der Bose-Einstein-Kondensation ermittelt werden.

Die Forscher haben mit ihrem Verfahren gemessen, wie die Temperatur eines Bose-Einstein-Kondensats in einer Falle mit harmonischem Potential im Laufe der Zeit anwächst. Nimmt man an, dass dem Kondensat aus seiner Umgebung Wärme mit konstanter Rate zufließt, dann kann man aus dem zeitlichen Verhalten der Temperatur T auf die Temperaturabhängigkeit der Wärmekapazität C(T) schließen. Markus Oberthaler und seine Mitarbeiter finden nun, dass T unterhalb von 59 nK nichtlinear mit der Zeit zunimmt, um dann oberhalb von 59 nK linear anzuwachsen. Somit erhält man: Tc = 59 nK. Oberhalb von Tc ist C demnach konstant, unterhalb von Tc gilt: C(T) ~ (T/Tc)d mit d=2,7(6), was gut mit der theoretischen Vorhersage d=3 übereinstimmt. Insbesondere verschwindet die Wärmekapazität eines entarteten Bose-Gases für T=0 - wie es der 3. Hauptsatz der Thermodynamik fordert.
Rainer Scharf

Weitere Infos

Originalveröffentlichung:
* Rudolf Gati et al.: Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates. Phys. Rev. Lett. 96, 130404 (2006) http://dx.doi.org/10.1103/PhysRevLett.96.130404, http://arxiv.org/abs/cond-mat/0601392

Gruppe von Markus Oberthaler: http://www.kip.uni-heidelberg.de/matterwaveoptics/

Quelle: pro-physik.de, siehe http://www.pro-physik.de

Rückfragen bitte an:
Prof. Dr. Markus Oberthaler
markus.oberthaler@kip.uni-heidelberg.de

Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.akademie-fuer-weiterbildung.de

Weitere Berichte zu: Atomwolke Bose-Einstein-Kondensat Kondensat

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie