Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LMU-Physiker finden Ordnung in der Unordnung - Transport in der Zelle, im Gel und anderen ungeordneten Materialien

08.05.2006


Die Natur, aber auch die moderne Technologie bringen eine große Vielfalt ungeordneter Materialien hervor. Dazu gehören unter anderem Fensterglas, Verbundwerkstoffe, die aus verschiedenen Komponenten zusammengesetzt sind, aber auch Zuckerwatte. Ein weiteres Beispiel ist die innere Struktur biologischer Zellen. In homogenen, also gleichförmig aufgebauten Materialien bewegen sich mikroskopisch kleine Partikel meist gemäß den Regeln der Brownschen Molekularbewegung - das ist die normale Diffusion. Sehr viel weniger gleichmäßig laufen dagegen Transportprozesse in ungeordneten Materialien ab. Professor Erwin Frey und seine Mitarbeiter Felix Höfling und Dr. Thomas Franosch vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München konnten in der Fachzeitschrift Physical Review Letters (PRL) zeigen, dass in diesen Fällen das seit längerem bekannte Lorentz-Modell zur Anwendung kommt. "Die Unregelmäßigkeiten im Aufbau ungeordneter Materialien verlangsamen den Transport", so Frey. "Die Transporteigenschaften der Partikel hängen dann direkt mit diesen strukturellen Hindernissen zusammen. Uns ist es jetzt gelungen, das dynamische Verhalten direkt von den zugrunde liegenden geometrischen Strukuren abzuleiten." Das Cover von PRL zeigt eine Abbildung aus der Veröffentlichung.



Gleichmäßig oder homogen aufgebaute Materialen haben eine kristalline Struktur und können deshalb mit einer einzigen Längenskala und einem einzigen Zeitmaßstab beschrieben werden. Mikroskopische Teilchen diffundieren in diesen Stoffen, bewegen sich damit also - statistisch gesehen - sehr gleichmäßig und vorhersagbar, in der Regel gemäß der Brownschen Molekularbewegung. Das geht sogar so weit, dass diese "Brownschen Teilchen" als Sonden in unbekannten Materialien eingesetzt werden können, um deren Eigenschaften zu bestimmen. "Wenn es Abweichungen von der normalen Diffusion gibt, deutet das auf komplexe Materialeigenschaften hin", berichtet Frey. In ungeordneten oder heterogenen Materialien aber fehlt die typische Längenskala, stattdessen weist das Material Poren verschiedenster Größe auf, ,,durch die sich die Teilchen bewegen können. Es entsteht in gewisser Weise ein dreidimensionales Netz mit kleinen und großen Maschenweiten. "In biologischen Zellen beispielsweise kann man beobachten, dass sich Proteine nicht in normaler, sondern anomaler Diffusion bewegen", so Frey. "Man führt das auf die hohe Dichte und die unregelmäßige Anordnung der zellulären Bausteine zurück, das zu diesem so genannten ’molecular crowding’ führt."

... mehr zu:
»Lorentz-Modell »Teilchen


Die vorliegende Analyse beruht auf dem Lorentz-Modell, das für den Transport von Partikeln in einem ungeordneten Medium und daraus resultierenden, gleich bleibenden Hindernissen für die Teilchen entwickelt wurde. Dieses Modell erlaubt aber nur ganz grundsätzliche Vorhersagen für den verlangsamten und ungleichförmigen Transport und stößt gerade in komplexeren Systemen schnell an seine Grenzen. "Ursprünglich wurde das Lorentz-Modell 1905 eingeführt, um den Elektronentransport in verunreinigten Metallen zu beschreiben, wobei die Verunreinigungen als Hindernisse zu sehen sind", berichtet Frey. "Das funktionierte aber nicht sehr gut. In den 60er Jahren wurde das Modell wieder aufgegriffen, um den Transport klassischer Teilchen in einem ungeordneten System zu beschreiben. Dabei wurden unter anderem Anomalien gefunden, die auf korrelierte Stöße mit den Hindernissen zurückzuführen und theoretisch sehr schwierig zu handhaben sind. Erst seit unserer Arbeit ist klar, wodurch die Lokalisierung der Teilchen bei hohen Hindernisdichten verursacht wird. Ganz genau gelang uns erstmals die Beschreibung der langsamen Dynamik und des Lokalisierungsüberganges bei sehr hoher Hindernisdichte."

Diese Ergebnisse erlauben weite Anwendungen von der Biologie zur Materialwissenschaft, weil sie universell für alle ungeordneten Materialien gelten. "Wir aber denken insbesondere an Anwendungen in der Biologie", meint Frey. "Langfristig besteht unsere Zielrichtung darin, den Transport von Makromolekülen in Zellen zu beschreiben. Und als nächsten Schritt haben wir vor, die Bewegung von stäbchenförmigen Proteinen in einem so genannten ’crowded environment’, also einem Medium mit sehr hoher Hindernisdichte, zu analysieren. Erste Hinweise haben wir schon. Das ist wichtig, um zu verstehen, wie stark chemische Reaktionen durch die Dichte und Verteilung anderer Proteine in Zellen beeinflusst werden." Ein weiteres wichtiges Forschungsgebiet sind chemische Reaktionen in porösen Medien. "Potential sehe ich daneben vor allem in der Nanotechnologie", so Frey. "In diesem Bereich wird es immer wichtiger, zu verstehen, wie chemische Reaktionen in nano-porösen Materialien ablaufen." (suwe)

Publikation:
"Localization Transition of the Three-Dimensional Lorentz Model and Continuum Percolation", Felix Höfling, Thomas Franosch, and Erwin Frey, Physical Review Letters, 28. April 2006

Ansprechpartner:
Professor Dr. Erwin Frey
Department für Physik der LMU
Tel.: 089-2180-4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Lorentz-Modell Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie