Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LMU-Physiker finden Ordnung in der Unordnung - Transport in der Zelle, im Gel und anderen ungeordneten Materialien

08.05.2006


Die Natur, aber auch die moderne Technologie bringen eine große Vielfalt ungeordneter Materialien hervor. Dazu gehören unter anderem Fensterglas, Verbundwerkstoffe, die aus verschiedenen Komponenten zusammengesetzt sind, aber auch Zuckerwatte. Ein weiteres Beispiel ist die innere Struktur biologischer Zellen. In homogenen, also gleichförmig aufgebauten Materialien bewegen sich mikroskopisch kleine Partikel meist gemäß den Regeln der Brownschen Molekularbewegung - das ist die normale Diffusion. Sehr viel weniger gleichmäßig laufen dagegen Transportprozesse in ungeordneten Materialien ab. Professor Erwin Frey und seine Mitarbeiter Felix Höfling und Dr. Thomas Franosch vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München konnten in der Fachzeitschrift Physical Review Letters (PRL) zeigen, dass in diesen Fällen das seit längerem bekannte Lorentz-Modell zur Anwendung kommt. "Die Unregelmäßigkeiten im Aufbau ungeordneter Materialien verlangsamen den Transport", so Frey. "Die Transporteigenschaften der Partikel hängen dann direkt mit diesen strukturellen Hindernissen zusammen. Uns ist es jetzt gelungen, das dynamische Verhalten direkt von den zugrunde liegenden geometrischen Strukuren abzuleiten." Das Cover von PRL zeigt eine Abbildung aus der Veröffentlichung.



Gleichmäßig oder homogen aufgebaute Materialen haben eine kristalline Struktur und können deshalb mit einer einzigen Längenskala und einem einzigen Zeitmaßstab beschrieben werden. Mikroskopische Teilchen diffundieren in diesen Stoffen, bewegen sich damit also - statistisch gesehen - sehr gleichmäßig und vorhersagbar, in der Regel gemäß der Brownschen Molekularbewegung. Das geht sogar so weit, dass diese "Brownschen Teilchen" als Sonden in unbekannten Materialien eingesetzt werden können, um deren Eigenschaften zu bestimmen. "Wenn es Abweichungen von der normalen Diffusion gibt, deutet das auf komplexe Materialeigenschaften hin", berichtet Frey. In ungeordneten oder heterogenen Materialien aber fehlt die typische Längenskala, stattdessen weist das Material Poren verschiedenster Größe auf, ,,durch die sich die Teilchen bewegen können. Es entsteht in gewisser Weise ein dreidimensionales Netz mit kleinen und großen Maschenweiten. "In biologischen Zellen beispielsweise kann man beobachten, dass sich Proteine nicht in normaler, sondern anomaler Diffusion bewegen", so Frey. "Man führt das auf die hohe Dichte und die unregelmäßige Anordnung der zellulären Bausteine zurück, das zu diesem so genannten ’molecular crowding’ führt."

... mehr zu:
»Lorentz-Modell »Teilchen


Die vorliegende Analyse beruht auf dem Lorentz-Modell, das für den Transport von Partikeln in einem ungeordneten Medium und daraus resultierenden, gleich bleibenden Hindernissen für die Teilchen entwickelt wurde. Dieses Modell erlaubt aber nur ganz grundsätzliche Vorhersagen für den verlangsamten und ungleichförmigen Transport und stößt gerade in komplexeren Systemen schnell an seine Grenzen. "Ursprünglich wurde das Lorentz-Modell 1905 eingeführt, um den Elektronentransport in verunreinigten Metallen zu beschreiben, wobei die Verunreinigungen als Hindernisse zu sehen sind", berichtet Frey. "Das funktionierte aber nicht sehr gut. In den 60er Jahren wurde das Modell wieder aufgegriffen, um den Transport klassischer Teilchen in einem ungeordneten System zu beschreiben. Dabei wurden unter anderem Anomalien gefunden, die auf korrelierte Stöße mit den Hindernissen zurückzuführen und theoretisch sehr schwierig zu handhaben sind. Erst seit unserer Arbeit ist klar, wodurch die Lokalisierung der Teilchen bei hohen Hindernisdichten verursacht wird. Ganz genau gelang uns erstmals die Beschreibung der langsamen Dynamik und des Lokalisierungsüberganges bei sehr hoher Hindernisdichte."

Diese Ergebnisse erlauben weite Anwendungen von der Biologie zur Materialwissenschaft, weil sie universell für alle ungeordneten Materialien gelten. "Wir aber denken insbesondere an Anwendungen in der Biologie", meint Frey. "Langfristig besteht unsere Zielrichtung darin, den Transport von Makromolekülen in Zellen zu beschreiben. Und als nächsten Schritt haben wir vor, die Bewegung von stäbchenförmigen Proteinen in einem so genannten ’crowded environment’, also einem Medium mit sehr hoher Hindernisdichte, zu analysieren. Erste Hinweise haben wir schon. Das ist wichtig, um zu verstehen, wie stark chemische Reaktionen durch die Dichte und Verteilung anderer Proteine in Zellen beeinflusst werden." Ein weiteres wichtiges Forschungsgebiet sind chemische Reaktionen in porösen Medien. "Potential sehe ich daneben vor allem in der Nanotechnologie", so Frey. "In diesem Bereich wird es immer wichtiger, zu verstehen, wie chemische Reaktionen in nano-porösen Materialien ablaufen." (suwe)

Publikation:
"Localization Transition of the Three-Dimensional Lorentz Model and Continuum Percolation", Felix Höfling, Thomas Franosch, and Erwin Frey, Physical Review Letters, 28. April 2006

Ansprechpartner:
Professor Dr. Erwin Frey
Department für Physik der LMU
Tel.: 089-2180-4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Lorentz-Modell Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics