Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Femto-Lasertechnik auf neuen Wegen

08.11.2001


Max-Planck-Forscher messen erstmals Effekte einzelner optischer Zyklen


Wenn ein Laserpuls so kurz wird, dass er nur wenige Femtosekunden lang aufblitzt, dann treten die einzelnen optischen Zyklen zu Tage, die sonst hinter der flachen Pulsform verborgen bleiben. Effekte dieser einzelnen optischen Zyklen haben Wissenschaftler des Garchinger Max-Planck-Instituts für Quantenoptik um Gerhard G. Paulus gemeinsam mit Mailänder Kollegen erstmals sichtbar gemacht (Nature, 8. November 2001). Den Forschern ist es gelungen, die Auswirkungen der so genannten absoluten Phase zu beobachten und ihren Effekt nachzuweisen. Dies hat weitreichende Bedeutung für viele Anwendungen der Femtosekunden-Lasertechnik.

Die schnellsten atomaren und molekularen Prozesse in Zeitlupe beobachten und dabei sehen, was Moleküle und Atome tatsächlich tun - mit Hilfe der Femtosekunden-Lasertechnik ist dies möglich geworden. Je kürzer die Laserpulse, desto schnellere Vorgänge können scharf abgebildet werden. Und nicht nur das: Auch eine größere (Frequenz-)Bandbreite steht zur Verfügung. Bei etwa fünf Femtosekunden liegt derzeit der Rekord, das sind nur wenige Billiardstel Sekunden, die das Licht aufblitzt. In diesem Bereich gewinnt ein Parameter an Bedeutung, den Wissenschaftler die "absolute Phase" eines Pulses nennen. Der Parameter beschreibt, wie sich die Phase der Trägerwelle zum Maximum der Einhüllenden des Pulses verhält (Abb. 1).


Abb. 1: Der Zeitverlauf des elektrischen Felds eines Laserpulses, der aus nur sehr wenigen optischen Zyklen besteht, hängt von der Phase der Trägerwelle bezüglich des Maximums der Pulseinhüllenden ab (hellblau). Die absolute Phase beträgt bei den Bildern 0, 1/2 und 1. Das absolute Maximum des Felds ist beim ersten beziehungsweise dritten Bild in positiver beziehungsweise negativer Richtung, während es beim mittleren Bild in beide Richtungen gleich groß ist.
Diagramm: Max-Planck-Institut für Quantenoptik


Wissenschaftlern des Max-Planck-Instituts für Quantenoptik in Garching ist es jetzt in Kooperation mit Kollegen der Polytechnischen Universität in Mailand erstmals gelungen, die Auswirkungen der absoluten Phase zu beobachten und ihren Effekt nachzuweisen. In der aktuellen Ausgabe der Fachzeitschrift Nature stellen sie das Experiment vor. Die Forscher haben dazu die Photoionisation mit ultrakurzen Laserpulsen untersucht. Die Vorgänge dabei kann man sich anschaulich etwa so vorstellen: Durch das oszillierende Feld des Lasers werden die Elektronen im Atom in Schwingungen versetzt, bis eines so viel Energie gewinnt, dass es den atomaren Verband verlässt. Bei langen Laserpulsen werden die Elektronen so oft hin und her geschüttelt, dass es gleichgültig ist, ob sie zuerst nach links und dann nach rechts ausgelenkt werden oder umgekehrt. Bei kurzen Zwei-Zyklen-Pulsen spielt es dagegen eine erhebliche Rolle, ob der erste Stoß von rechts oder von links kommt (Abb. 2).


Abb. 2: Eine fast perfekte Analogie zur Photoionisation mit langen und kurzen Pulsen kann man bei Asterix und Obelix finden. Für den Römer, den Obelix etwas ungeduldig nach seinem Helm fragt, ist es völlig belanglos, ob die erste Ohrfeige nun von rechts oder von links kam. Die Situation entspricht einem Laserpuls mit vielen optischen Zyklen. Dagegen bewegt sich der Helm des Kontrahenten von Asterix offensichtlich auf verschiedenen Flugbahnen, abhängig von der "absoluten Phase" des Kinnhakens.
Comic: ©2001, Editions Albert René / Goscinny-Uderzo


In ihrem Experiment haben die Garchinger Forscher mit Wellenlängen am oberen Rand des sichtbaren Spektrums (etwa 800 Nanometer) gearbeitet. Bei einer Pulsdauer von fünf Femtosekunden bedeutet dies, dass die Lichtwelle weniger als zwei volle Schwingungszyklen durchläuft. Die absolute Phase ändert sich dabei von Laserpuls zu Laserpuls in zufälliger Weise. Deshalb haben die Wissenschaftler das Stereo-Photoionisationsexperiment gewählt. Dabei werden zwei Elektronendetektoren verwendet, die sich gegenüber stehen (Abb. 3). Für jeden Laserpuls wird damit die Anzahl der nach links und rechts emittierten Photoelektronen gleichzeitig registriert. Wenn nun beispielsweise die absolute Phase eines Laserpulses so liegt, dass das Maximum der Feldstärke (genauer des entsprechenden "Vektorpotenzials") nach rechts zeigt, so werden viele Elektronen am rechten Elektronendetektor und wenige am linken gezählt - und umgekehrt. Das heißt: Bei jedem Laserschuss ist die Anzahl der nach links und rechts wegfliegenden Elektronen antikorreliert. Ein Laserpuls, der viele Elektronen nach links emittiert, sendet wenige nach rechts aus und umgekehrt. Der sehr empfindliche Nachweis dieser Antikorrelation war schließlich die entscheidende Spur, mit der erstmals der Effekt der absoluten Phase belegt werden konnte (Abb. 4).


Abb. 3: Laserpulse mit einer Dauer von etwa fünf Femtosekunden (pink) werden auf Kryptonatome (hellblau) fokussiert. Die Anzahl der nach links und rechts emittierten Photoelektronen hängt von der absoluten Phase des jeweiligen Pulses ab. Sie werden Schuss für Schuss durch zwei Elektronendetektoren (grau) registriert. Zusätzlich kann auch ihre Flugzeit und damit ihre kinetische Energie gemessen werden.
Zeichnung: Max-Planck-Institut für Quantenoptik


Die Wissenschaftler gehen davon aus, dass dieser Nachweis Bedeutung hat für viele Anwendungen der ultrakurzen Laserpuls-Technik. Sei es die Steuerung von kohärenten chemischen Reaktionen oder die Erzeugung von noch kürzeren Pulsen (Attosekunden) und damit zusammenhängend die Erzeugung von laserartigem Licht im Röntgenbereich. Dies alles erfordert, dass die absolute Phase konstant gehalten werden kann. Auch für die Präzisionsmessung optischer Frequenzen und ihren Anwendungen in der Telekommunikation ist es wünschenswert, dass die absolute Phase für alle Pulse, die von einem Laser erzeugt werden, konstant ist. Erst dann ist nämlich eine optimale Zeitmessung möglich. Letztlich sind sämtliche Phänomene, die durch Laserpulse hervorgerufen werden, abhängig vom zeitlichen Verlauf des elektromagnetischen Felds und damit - sehr kurze Pulse vorausgesetzt - auch von der absoluten Phase. Deshalb ist die Stabilisierung der absoluten Phase für intensive Laserpulse die nächste große Herausforderung für die Laserphysiker. Dies setzt jedoch voraus, dass man Messmethoden für die absolute Phase besitzt. Die Arbeit der Garchinger und Mailänder Wissenschaftler zeigt eine Möglichkeit dazu auf.


Abb. 4:Die Signatur der absoluten Phase ist eine Antikorrelation in der Anzahl der nach links und rechts emittierten Photoelektronen. Grafisch kann man sie dadurch darstellen, dass man jeden Laserschuss entsprechend der von ihm erzeugten Anzahl an Photoelektronen in eine Korrelationstafel einträgt. Häufig auftretende Zahlenpaare sind hier in roten, seltenere in blauen Farbtönen verzeichnet. Die Antikorrelation zeigt sich in der vergleichsweise hohen Zahl von Laserschüssen, die zu stark asymmetrischen Elektronenzahlen im rechten und linken Detektor führen, also zu großem Ausschlag nach links bei kleinem Ausschlag nach rechts und umgekehrt. Dies entspricht Punkten, die nahe an der horizontalen oder vertikalen Achse liegen.

Dr. Gerhard G. Paulus | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: ABB Elektron Femtosekunde Laserpuls Max-Planck-Institut Photoelektron Zyklus

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics