Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternenbeben enthüllt verborgenen Aufbau eines Neutronensterns

26.04.2006


Internationalem Forscherteam gelingt es mit seismologischen Methoden erstmals ins Innere eines extrem kompakten Himmelkörpers zu blicken


Oberflächenmuster für verschiedene Verwindungsoszillationen, die möglicherweise durch den Hyperflare angeregt wurden. Die Farbcodierung und Länge der Pfeile kennzeichnen die Stärke der Schwingungen. Bild: Max-Planck-Institut für Astrophysik


Die Röntgenmessung für den Hyperflare, der den Hauptausbruch beim Zeitnullpunkt zeigt, gefolgt von einer allmählichen Abnahme des Signals. Die regelmäßigen Pulse stammen von einem Feuerball heißen Plasmas, das nahe an der Oberfläche des Neutronensterns eingeschlossen ist und sich durch die Sternrotation periodisch in und aus unserer Beobachtungsrichtung dreht. Die viel schnelleren seismischen Oszillationen sind viel zu schnell, um auf diesem Bild sichtbar zu sein. Sie beginnen etwa 50 Sekunden nach dem ersten Ausbruch. Bild: Max-Planck-Institut für Astrophysik



Ein amerikanisch-deutsches Team von Wissenschaftlern des Max-Planck-Instituts für Astrophysik und der NASA hat mit Hilfe von Messungen des "Rossi X-Ray Timing Explorer", eines Röntgensatelliten der NASA, die Dicke der Kruste eines Neutronensterns bestimmt. Neutronensterne sind die dichtesten Objekte, die im Universum existieren, mit bislang nicht bekannten Eigenschaften in ihrem Inneren. Nach den neuen Messungen, die die Forscher am Montag, 24. April 2006, auf der Jahrestagung der American Physical Society in Dallas, USA, vorgestellt haben, ist die Kruste von Neutronensternen bis zu 1,5 Kilometer stark und so dicht gepackt, dass ein Teelöffel dieser Materie auf der Erde 10 Millionen Tonnen wiegen würde.

... mehr zu:
»Neutronenstern »SGR


Diese Messung ist die erste ihrer Art und wurde durch eine starke Explosion auf einem Neutronenstern im Dezember 2004 ermöglicht. Von dieser Explosion ausgelöste Vibrationen enthüllten bisher unbekannte Details über den Aufbau von Neutronensternen. Das dabei verwendete Verfahren ähnelt der Seismologie, die den Aufbau der Erdkruste und des Erdinneren mit Hilfe seismischer Wellen erforscht, die von Erdbeben und Explosionen ausgelöst werden.

Das neuartige Verfahren erlaubt es nun, das Innere eines Neutronensterns - eines bisher unerforschten und verborgenen Gebiets - zu untersuchen. Dort sind Druck und Dichte so hoch, dass im Zentrum des Neutronensterns möglicherweise exotische Teilchen zu finden sind, die sonst nur zum Zeitpunkt des Urknalls existiert haben.

Dr. Anna Watts vom Max-Planck-Institut für Astrophysik (MPA) in Garching hat dieses Forschungsprojekt in Zusammenarbeit mit Dr. Tod Strohmayer vom NASA Goddard Space Flight Center in Greenbelt, Maryland, USA, durchgeführt.

"Diese Explosion war die stärkste jemals beobachtete ihrer Art. Wir vermuten, dass sie den Stern durchgeschüttelt und ihn praktisch wie eine Glocke zum Klingen gebracht hat", so Strohmeyer. "Obwohl die durch die Explosion erzeugten Vibrationen schwach sind, geben sie ganz genaue Hinweise darauf, woraus diese merkwürdigen Sterne bestehen. Wie bei einer Glocke hängen die Schwingungen im Neutronenstern davon ab, wie die Wellen durch Schichten verschiedener Dichte laufen, die elastisch oder fest sein können."

Ein Neutronenstern ist der Überrest aus dem Kernbereich eines Sterns, dessen Gesamtmasse einst ein Vielfaches der Masse unserer Sonne betrug. Er enthält ungefähr die 1,4-fache Masse der Sonne, die allerdings in einer Kugel von lediglich 20 Kilometern Durchmesser zusammengepresst ist. Die beiden Wissenschaftler haben einen Neutronenstern namens SGR 1806-20 untersucht, der etwa 40.000 Lichtjahre von der Erde entfernt im Sternbild Schütze liegt. Dieses Objekt gehört zu einer bestimmten Art von stark magnetisierten Neutronensternen, die Magnetare genannt werden.

Am 27. Dezember 2004 ereignete sich auf der Oberfläche von SGR 1806-20 eine Explosion mit noch nie da gewesener Stärke (s. Abb. 2). Sie war die hellste jemals außerhalb unseres Sonnensystems beobachtete Explosion. Die Explosion, auch "Hyperflare" genannt, wurde durch eine plötzliche Veränderung im gewaltigen Magnetfeld des Sterns verursacht, wodurch die Kruste aufgesprengt und wahrscheinlich ein gewaltiges Sternbeben ausgelöst wurde. Dieses Ereignis wurde von einer Vielzahl von Weltraum-Observatorien beobachtet, unter anderem auch vom "Rossi Explorer" der NASA, der das dabei abgestrahlte Röntgenlicht aufzeichnete.

Strohmayer und Watts glauben, dass die Oszillationen auf Verwindungsschwingungen der gesamten Sternkruste zurückzuführen sind. Solche Vibrationen sind den bei Beben auf der Erde gemessenen S-Wellen ähnlich, die wie eine Welle entlang eines Seiles laufen (s. Abb. 1). Die beiden Wissenschaftler, die für ihre Studien Messdaten von Dr. Gian Luca Israel vom italienischen Nationalen Institut für Astrophysik benutzten, konnten mehrere neue Vibrationsfrequenzen in dem Hyperflare identifizieren.

Watts und Strohmayer bestätigten anschließend ihre Messungen mit Hilfe des "NASA Ramaty High Energy Solar Spectroscopic Imager", einem Satelliten zur Sonnenbeobachtung, der auch den Hyperflare aufgezeichnet hatte. Sie entdeckten dabei erstmals Hinweise auf eine hochfrequente Oszillation von 625 Hertz, die von Wellen stammen könnte, welche sich senkrecht in die Kruste hinein ausbreiten.

Die große Zahl von Frequenzen, die mehr einem Akkord als einem einzelnen Ton gleichen, ermöglichte es den Wissenschaftlern, die Tiefe der Neutronensternkruste abzuschätzen. Dies ist möglich durch den Vergleich der Frequenzen von Wellen, die sich entlang der Sternkruste bewegen, mit jenen, die sich radial durch die Kruste hindurch ausbreiten. Der Durchmesser eines Neutronensterns ist nicht genau bekannt. Wenn man aber den geschätzten Wert von etwa 20 Kilometern annimmt, wäre seine Kruste ungefähr eineinhalb Kilometer dick. Diese aus den gemessenen Frequenzen abgeleitete Zahl stimmt wiederum gut mit theoretischen Modellen überein.

Mit der Sternbeben-Seismologie dürften sich viele weitere Eigenschaften von Neutronensternen bestimmen lassen. Strohmayer und Watts analysierten auch die Daten von "Rossi" zu einem schwächeren Hyperflare eines anderen Magnetars (SGR 1900+14) aus dem Jahr 1998. Sie fanden auch dort die verräterischen Oszillationen. Allerdings waren diese nicht stark genug, um die Krustendicke zu bestimmen.

Mit der Messung der Röntgenstrahlung bei anderen starken Neutronenstern-Explosionen könnten künftig noch weitere Geheimnisse dieser Objekte gelüftet werden, zum Beispiel die Frage nach dem Zustand der Materie in ihrem Innern. Möglicherweise existieren dort nämlich freie Quarks. Solche Quarks sind die elementarsten Bausteine von Protonen und Neutronen und unter normalen Umständen immer eng aneinander gebunden. Ein Nachweis von ungebundenen Quarks würde helfen, die wahre Natur von Materie und Energie zu verstehen. Denn bei Experimenten auf der Erde kann man die zur Entdeckung von ungebundenen Quarks notwendigen hohen Energien nicht erzeugen, auch nicht mit den größten Teilchenbeschleunigern,.

"Neutronensterne sind fantastische Laboratorien, um Physik unter Extrembedingungen zu untersuchen.", so Watts. "Wir würden gerne einmal einen solchen Stern aufbrechen, doch da dies wohl leider nicht möglich sein wird, sind Magnetar-Hyperflares vermutlich die beste Möglichkeit, die uns für solche Beobachtungen bleibt."

Originalveröffentlichung:

A.L.Watts & T.E.Strohmayer
Detection with RHESSI of high frequency X-ray oscillations in the tail of the 2004 hyperflare from SGR 1806-20
The Astrophysical Journal, 637, L117, (2006)

T.E.Strohmayer & A.L.Watts
Discovery of fast X-ray oscillations during the 1998 giant flare from SGR 1900+14
The Astrophysical Journal, 632, L111, (2005)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Neutronenstern SGR

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie