Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das kosmische Glimmen - schwächer als gedacht

25.04.2006


So wirkt sich das extragalaktische Hintergrundlicht (EBL) auf die Gammastrahlung eines fernen Quasars aus: Bei hoher Dichte der EBL-Photonen kommt es zu vielen Kollisionen mit den Gammalichtteilchen - die Absorption ist stark, das Spektrum deutlich verändert (oben rechts). Bei geringer Dichte der EBL-Photonen und dementsprechend schwacher Absorption ändert sich das Spektrum nur wenig (unten rechts). Bild: H.E.S.S.-Kollaboration


Messungen des H.E.S.S.-Teleskops zeigen, dass das Hintergrundlicht die Gammastrahlung ferner Quasare kaum dämpft

... mehr zu:
»Galaxie »Glimmen »Strahlung

Ein kosmisches Hintergrundleuchten erfüllt das gesamte Weltall. Es gilt als Überrest allen Lichts, das von sämtlichen Quellen wie Sternen oder Galaxien jemals ausgestrahlt wurde. Jetzt haben Astrophysiker herausgefunden, dass die Intensität dieses Glimmens wesentlich geringer ist als bisher vermutet. Als "Sonden" nutzten die Forscher zwei weit entfernte Quasare, deren Gammaspektren sie mit den H.E.S.S.-Teleskopen in Namibia aufzeichneten. Die Spektren erschienen dabei nur wenig gerötet - das Hintergrundlicht vermag die Strahlung der Quasare nicht sehr stark zu trüben. Die Beobachtung wirft neue Fragen zu Geburt und Entwicklung der Galaxien auf (Nature, 20 April 2006).

Das Hintergrundlicht ist ein "universales" Phänomen und durchdringt gleichmäßig den intergalaktischen Raum. Alle Arten von Objekten wie Sterne, Galaxien oder Quasare tragen zu diesem Strahlungsnebel bei. Er gilt als Überrest all des Lichts, das im Weltall jemals emittiert wurde; so überdeckt dieses extragalactic background light (EBL) sämtliche Epochen, von der Entstehung der ersten Sterne und Galaxien bis in die heutige Zeit. Lange haben die Wissenschaftler versucht, diese Emission zu messen. Ihre direkte Bestimmung aus dem gleichmäßigen Leuchten am Nachthimmel ist jedoch sehr schwierig und äußerst ungenau, weil die irdische Atmosphäre, das Sonnensystem sowie die Milchstraße das schwache Glimmen gleichsam überstrahlen.


Einen Ausweg bietet die Beobachtung von Quasaren - jenen kosmischen Kraftwerken, die in ihrem Zentrum ein außergewöhnlich massereiches Schwarzes Loch beherbergen. Eine solche Schwerkraftfalle verschlingt Gas aus der Umgebung und spuckt einen Teil davon als Plasma wieder aus, das dabei annähernd auf Lichtgeschwindigkeit beschleunigt wird. Der gebündelte Strahl aus Protonen, Elektronen und elektromagnetischen Wellen erreicht nicht selten die hundertfache Ausdehnung seiner Muttergalaxie. Zeigt die "Düse" des Quasars in Richtung Erde, erscheint die Strahlung extrem verstärkt: Die Astronomen sehen einen Blasar.

Die beiden von den H.E.S.S-Forschern ins Visier genommenen Objekte gehören in diese Klasse. Wie aber lassen sich die beiden Blasare als Sonden nutzen? Die von ihnen ausgesandten sehr energiereichen Gammalichtteilchen stoßen auf ihrem langen Weg zur Erde mit den Photonen des Hintergrundlichts zusammen und werden dabei abgeschwächt. Der Effekt führt zu einer Rötung des ursprünglichen Gammaspektrums eines Blasars - etwa so, wie die untergehende Sonne nahe des Horizonts röter aussieht, weil der blaue Anteil des Sonnenlichts in der Erdatmosphäre stärker gestreut wird als der rote. Dabei gilt: Je dichter die Atmosphäre, desto röter erscheint die Sonne. Die Rötung hängt also von der Dichte des Mediums (in dem Fall der Luftschichten) ab. Auf diese Weise sollte sich auch die Beschaffenheit des Hintergrundlichts bestimmen lassen.

"Das Hauptproblem dabei ist, dass die Energieverteilung im Gammaspektrum von Quasaren viele verschiedene Formen annehmen kann. Bisher ließ sich nicht wirklich sagen, ob ein beobachtetes Spektrum rot aussieht, weil es tatsächlich einer starken Rötung ausgesetzt war, oder ob es schon am Ursprung so aussah", sagt Luigi Costamante vom Max-Planck-Institut für Kernphysik in Heidelberg.

Die Gammaspektren der beiden Quasare namens H 2356-309 und 1ES 1101-232 haben dieses Problem jetzt gelöst. Die Objekte sind weiter entfernt als alle bisher beobachteten Quellen und konnten nur dank der unerreichten Empfindlichkeit des H.E.S.S.-Instruments untersucht werden. Das Ergebnis: Die Intensität des Hintergrundlichts reicht nicht aus, um das Quasarlicht rot zu färben - die Spektren sind zu blau, enthalten also zu viele Gammastrahlen am hoch energetischen Ende des gemessenen Bereichs.

Die maximale Intensität des diffusen Lichts, die sich aus den H.E.S.S.-Daten ableiten lässt, liegt in der Tat sehr nahe an der unteren Grenze, die aus der Summe des Lichts einzelner, in optischen Teleskopen sichtbaren Galaxien resultiert. Das liefert eine Antwort auf eine der Fragen, die Wissenschaftler schon seit einigen Jahren verwirrt hat: Wird das diffuse Licht vor allem von der Strahlung der ersten Sterne im Universum bestimmt? Das Resultat von H.E.S.S. scheint eine solche Möglichkeit auszuschließen. Außerdem lässt es wenig Spielraum für wesentliche Beiträge anderer Arten von Quellen als normale Galaxien. Ein besserer Durchblick durch den intergalaktischen Raum eröffnet zudem neue Perspektiven für die Untersuchung von Gammaquellen außerhalb unserer eigenen Galaxis.

Originalveröffentlichung:

H.E.S.S. collaboration, Felix Aharonian et al.
A low level of extragalactic background light as revealed by gamma-rays from blazars
Nature 440 (2006), 1018-1021

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Galaxie Glimmen Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie